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1- Introduction
The objective of the PHILAE project is to generate and maintain automated regression tests
by  performing  execution  trace  analysis  and  triage  using  machine  learning  techniques,
combining this analysis with model inference and automated test generation. Thus, PHILAE
aims at leveraging data available from development (esp. validation) and usage of software
systems to automatically adapt and improve regression tests.
Figure 1 shows the main processes involved in this project, in four iterative and incremental
steps: 

1.  Execution traces coming from the system in operation but  also from manual  and
automated test  execution are used to select  trace candidates  as new regression
tests.  Search-based algorithms and coverage metrics will be used to classify and
select traces;

2.  From selected traces and existing workflows, active model inference is used to infer
updated workflow models, which align with the current state of the implementation;

3.  Reduced regression test suites are generated from the updated workflows, and these
are then executed on the current system implementation;

4.  Based  on  the  test  execution  results,  the  defects  detected,  and  the  development
meta-data  (such as  commits  in  the  code  repository),  a  smart  analytics  and  fault
reporting system provides information on the quality of the system.

 

Figure 1 – PHILAE process
 
This  deliverable  D1.1  is  a  result  of  task  T1.1-Define  data  gathering,  preparation  and
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clustering of the work package WP1- Select traces as new regression test candidate. The
goal  of  T1.1  is  to  define  what  type  of  information  to  extract  from  the  trace  and  what
requirements do exist  on the trace format,  to  enable  us organizing the data for  feeding
learning tools.
 
This deliverable D1.1 describes the types and the organization of the data used in PHILAE
as inputs, so that  they can feed the PHILAE processes,  in particular  initially  as input  to
Machine Learning (ML) tools.
The main input  for  PHILAE consists of execution traces,  that are collected either during
validation phases (automated tests,  additional  tests that  can be performed “manually)  or
while the system is running in the field. In order to develop generic tools in PHILAE that are
independent of a specific software system, there are some common features for the content
and description of the data collected from traces.
 
Scope of the document
This document summarizes the status of the studies at the beginning of the PHILAE project
concerning the input data for ML techniques, and more particularly the characterization of
execution traces, as well as their representation in an appropriate format.
It aims to present this format and illustrates its usage in the PHILAE case studies.
 
Limitation of the document
This document contains the thinking status of the PHILAE project at the date of delivery
(T0+9 months). As the work progresses, the considered data will be extended (beyond the
execution traces) and the formatting processes will also evolve.
 
Organization of the document
Deliverable D1.1 is organized into 4 main sections:

● section 2- A partial taxonomy of PHILAE data, which characterizes the input data

required for any PHILAE process (see Figure 1)
● section 3- Framework for describing datasets, which introduces the proposed data

format for PHILAE
● section 4-  Illustration  of  case studies,  assessing how this  format can be used in

PHILAE case studies
● Section 5-  Conclusion and perspectives,  providing a synthesis  of  the results  and

further work in PHILAE.

2- A partial taxonomy of data for PHILAE

2.1 Glossary

Event: a record of values related to the execution of a software at a single point in time; it
can consist of values of program variables (including values handled by the O/S such as
program counter, memory used etc), of messages, and measured external values such as
current time. An event results from some observation of the execution of the program, either
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internally  by  the  program  (that  can  write  values  in  a  log  file),  or  externally  from  its
environment (in particular the O/S, or some probe). An event can be a vector or a structured
record of several values.

Trace: a sequence of events.

2.2 Analysis

PHILAE gets information from software testing and usage, mostly in the form of execution
traces,  using  several  sources  and  formats  of  information.  At  this  stage  of  the  PHILAE
research, we do not focus on specific types of data, as long as they fit  into the general
framework of the project, as represented by Figure 1. Therefore, in this section, we attempt
to  cover  the  variety  of  these  sources  of  information  from  software  development  and
operation, and their content. This will help in identifying the types and formats of the data for
the following phases of PHILAE.
We try to categorize them using a taxonomy based on several  dimensions,  that  can be
associated with each dataset. Each source of information (typically a file containing a trace)
can come from a different phase of the lifecycle of a software,can be recorded at some level
of  the  architecture of  the system,  and can contain  more or  less  details  about  recorded
events.

The  position  of  a  dataset  along  all  those  dimensions  can  be  captured  by  metadata
associated with the dataset.
We identify the following dimensions:

● Nature of the data: to differentiate for instance runtime call logs, interaction logs,

information from development (such as code change and commits, bug tracking
records etc).

● Origin: identifying the phase in the software lifecycle and development activities

that  actually  produced  (not  just  defined)  the  dataset  ;  figure  1  stresses  user
execution traces (from operational use), automated test traces (from regression
testing) and manual testing traces (from initial test stages).

● Observation point: identifying where in the architecture the data is observed to

be recorded (user interface, internal interfaces…)
● Abstraction level: data records can contain information with more or less details

on the software objects and activities (e.g. just calls, or calls with parameters and
sometimes stack trace)

For  instance,  for  the shop-scanner  case study (see Section  4 for  a full  description),  an
execution trace (Nature=trace)  recorded in a simulated session can originate from beta-
testing  or  demonstration  (Origin),  can  contain  events  observed  from  the  Man-Machine
Interface  (Observation  point),  may  correspond  to  one  action  from  a  simulated  user
(Abstraction level= user actions) and may contain a record of information such as user-id,
action type, date, etc.
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Once a dataset  is  categorized along those dimensions,  as described in  some metadata
associated  to  the  dataset,  its  overall  structure  (and  possibly  encoding  rules)  can  be
described. Finally, the content of the dataset follows the structure.
 
So a dataset can be described as a triple :

(description-metadata, structure, content)
where description-metadata is itself a tuple (nature, origin, obs-point, level).
Of course, the content of execution traces can be huge, but the metadata would remain
much smaller and easy to process
Based on the state of the art for data to be used by ML tools and the typical organization of
execution logs, as will be seen in section 3, we will propose a format (GDF) for describing
the datasets.
The structure part can describe the overall organization (fields of information, their types and
encoding) of the data, and it can provide  means for reading the content of the dataset. For
instance, for CSV files with one event per line, the structure would describe the columns. For
a content XML, it can be an XML schema.

2.3 Nature

PHILAE  will  mostly  use  traces,  but  it  can  also  use  other  forms  of  data  such  as  code
changes, or information on defects. Based on the current case studies, we group them as
follows:

● Execution traces:  sequences of  observations collected by a software system

over  some  period  of  time.  They  typically  come  from  some  instrumentation:
logging  internal  events  (such  as  trace  points  in  the  code,  function  calls)  or
communications,  or  collecting  observations  when  exercising  the  system
(interaction logs).

● Monitoring traces: sampling characteristics of a system at runtime, that may not

be directly linked to the workflow of the system. As seen in the Orange livebox
case  study  (See  Section  4  for  a  full  description),  useful  information  can  be
collected from sources that are not directly triggered automated or manual tests.

● Non-Execution traces:  data not related to the execution of the system, such as

general information on user profiles and behaviours, information on development
processes etc.

2.4 Origin
Data can come from different phases of the software life cycle. In PHILAE, we consider in
particular the following phases that can provide data. Note that some may produce data that
would mostly be of “non-execution” nature (such as development,  before the program is
actually run and tested), others would produce mostly (at least in bulk) logs.

● Development:  corresponding  to  the  design  and  coding  phases  and  associated

processes, in particular
○ design: specification of new features, definition and change of architecture,

components, functions, modules, etc.
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○ coding:  code  changes,  modification  and  enrichment  of  data  types,  code
refactoring

○ debugging: if available, recorded debug sessions
○ version control: commits and associated code chunks or tests, diffs between

versions
● Validation  and Verification:  All  abstract  and concrete  traces collected  from test

executions,  model  checking,  symbolic  execution.  Test  verdicts  also  fall  into  that
category.

○ Unit tests and associated architecture elements and components, expected
values

○ Integration tests (e.g., values used in stubbing)
○ System test (test logs as well as internal logs)
○ Regression tests
○ Other types of automated tests (e.g., acceptance, performance testing, etc.)

● Field and beta testing: Traces collected from operational execution environments

during  beta  testing  phases.  Interestingly,  these  traces  are  representative  of  the
potential  problems related to the operational  usage of  the software-system in  its
execution environment.

● Exploitation:  Traces  collected  from  operational  execution  environments  during

exploitation. These traces include:
○ Execution logs: recording  events and interactions ;
○ Monitoring logs: sampling observations of the system ;
○ User traces and feedbacks ;
○ Error traces with bug report and observation.

2.5 Observation point
Recorded data can come from observations made inside the software system (e.g., traces
produced by calls to loggers introduced by developers), or from external view points where
the system if considered as a black box: typically user traces, or test records. Information
recorded  from  process  development  such  as  those  from  bug  trackers  or  version
management are another type of viewpoint.
It is also important to relate the observation with the architecture of the software. Even for
observations from inside the software system,  observability can be compromised by the
relation between  cause of  events and the point where the event is observed. The distance
can induce delays (and wrong interleaving of observations w.r.t. real order), masking etc.

2.6 Abstraction level
Execution traces and monitoring records are typically structured as sequences of events.
Each observed event  can record information under the form of a vector of values, or with a
more complex structure that may vary along the execution, for instance depending on the
type  of  event  recorded.  The  variation  between  these  information  records  is  known  as
abstraction level.
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2.7 Requirements on  PHILAE formats
The PHILAE project handles execution traces as first class citizens. Although the information
collected  in  traces  are  dependent  on  the  application,  we  can  identify  generic  types  of
contents in each event that are particularly relevant for PHILAE.

Temporal ordering

For traces, two particular fields of information for each observation in the sequence are of
particular interest:

● Index.  A sequence  is  an  indexed  list  of  observations,   Indexes  can  be  explicit

(countered indexes) or implicit (deduced from the listing)
● Timestamp.  Each  observation  is  usually  timestamped.  Most  of  the  time  the

timestamp is explicit, although for periodic monitoring, it can be just equivalent to an
index.

Location

At low level, software logging tools can provide a code line number for each recorded event,
or a reference to a logging point. This is sometimes called a tracepoint (because it is the
point where a call to a tracing library is inserted). At a higher level, it can be a component id
or a subsystem in a distributed system, or just an observation point. Note that if the location
is shared by all events of a trace, it might not be recorded (and thus repeated) in each event
but in the metadata associated to the trace.

3- Framework for describing datasets

3.1 State of the art

Trace format for software execution logs

In most organized software development, traces would be produced by dedicated tracing
libraries.
The organization of the information in such traces can be analyzed at three different levels:

● Conceptual  level,  giving  the  semantic  structure  of  the  information;  e.g.,  a  trace

consists  of  sequence  of  events,  each event  starts  with  a  location  in  a  program,
followed by a timestamp, followed by an event type, and - depending on the event
type - arguments whose domain is defined

● Logical  level.  organizing  the  fields  of  information  with  precise  computer  data

structures (e.g. record with named items, numerical value, text...) to be mapped to
the physical level

● Physical  level.  the  exact  format,  with  syntax  and  encoding  rules,  that  can  be

separated (as in e.g. ASN.1 and CER) or mixed (as in XML or JSON) that define both
the syntax and the encoding.

Defining traces data using these 3 layers enables interoperability between trace producers
and  consumers  (monitors,  analyzers  but  also  stores,  transmission  channels,  etc.).  For
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instance,  transmission  channels  and  stores  may  only  need  to  know about  the  Physical
model, while filtering tools may ignore the Conceptual model (although the actual definition
of the filter would be defined by an expert aware of the conceptual model). On the other
hand, trace providers and analyzers can use the Logical model to remain independent from
the  Physical  model  (such  as  a  wire  or  file  format)  and  know  the  minimum  about  the
Conceptual model required for the task at hand.

At  the physical  level,  traces use either generic  multi-purpose formats or  more dedicated
formats specific for event logs.
The most common generic formats used for traces are: CSV, JSON, XML that are all string
based representations with no concern for compactness. Some tools may use more compact
binary  representations  such  as  CBOR  (http://cbor.io),  or  encoding  rules  from  ASN.1
standards, such as BER, CER.
More specific  formats  for  event  logs  can  also  be used,  such  as  syslog  (used  by  most
operating  systems  for  logging  system  events),  or  XES  (eXtensible  Event  Stream
http://www.xes-standard.org) used in Business Process engineering.

PHILAE should not depend on a specific physical format for traces, although this implies that
specific encoders/decoders may be needed to deal with each type of trace encoding. The
actual  encoding/decoding  can  be  done  with  existing  libraries.  For  PHILAE  tools,  the
adaptation will mostly lie at the logical level.

Organization of data for applying ML tools

Ideally, the representation framework used in PHILAE should be as open as possible  to
provide us with a wide choice of  ML tools. As traces are complex data structures, composed
of sequences, timestamps, application domain dependent properties, etc using  available ML
representations may be insufficient. The classical representations have 4 drawbacks:

1. They are poor in terms of what is possible to express since they limit themselves to
only represent information directly used/usable by these tools.

2. Consequently very few information are retained concerning the semantics of the data
and more generally about specificities of application domains.

3. The  “encoding  step”,  that  is  to  say  the  way  we  go  from  the  initial  data  to  the
representation needed by the learning tool can be complex and mostly done by hand
(or by writing a wrapper): that is inappropriate with one of PHILAE's objectives which
is to automate as much as possible  trace analysis.

4. These formats are mainly  seen to  represent  “input  files”,  forgetting  that  in  some
cases  datasets  can be  seen  as  the  output  of  previous  learning  processes,  thus
leading to multiply the representation formats.

Classical data format in ML

In some ML models, a set of observations is  expressed as a table (matrix or tensor) in
which  rows correspond  to observations  (examples)  and columns correspond to features
(variables). In this table each cell contains a value which is typically a number or a string
(enumerated or ordinal values) but that needs to be turned into a numerical value for many
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ML tools. Concerning the format to use for this table there are several possibilities. Among
the most popular we find:

● Pure CSV file, in which feature semantics  is mostly described with a text document

independently from the dataset itself as in the UCI repository. Most of the classical
ML libraries (scikit-learn,  Panda,  R, ...)  use this kind of representation along with
some tools to perform modifications or filtering while reading the data.

● ARFF files used by Weka which allows one to declare the features (type and in some

cases the range) used in the data set. Amazon ML format also allows one to declare
the  type  of  the  attributes  using  a  “Data  Schema”,  the  data  themselves  being
classically written using a CSV file.

● Orange format that is based on header lines in the CSV file. In the oldest version only

a single line is used while three lines are used in the latter.

ARFF, Amazon and Orange formats provide little information about features’ contents and
their semantics. Indeed, the set of types proposed is limited to the standard ones (number,
enumerate, string,...) that are close to elementary computer types. . An illustrative example is
the case of “modular values” such as  hours,  month or  angle :  by using a raw numerical
representation there is no min/max values and modular computations Consequently, some
classical functions such as the geometric distances functions may compute wrong results if
they ignore the modular computations.

Representation of traces, time series or sequences

Standard statistical ML is performed on unordered sets of data. But when what is learnt is
sequential patterns of time-stamped values (possibly multidimensional), specific algorithms
can be employed. The sequences of events that constitute the main material for PHILAE fall
into the category called “time series” in ML.
To represent  time series  (TS),  there is  no universal  format.  In  practice,  as  explained in
table 1, data structure in CSV files can be done following three main approaches depending
on whether data are mainly organized around the notions of features, examples or both. In
the two first approaches, TS can be described in the files using either a row format or a
column format.

Data 
Structure

File contains Organisation Examples

Features 
based

One pair 
example/feature

Features are folders containing one 
file per example, this file contains 
one TS that can be described either 
with row or column format

N examples per 
feature

Associated to each feature there is 
a file describing all the examples.

UCR data format (only one feature in
this case), class of the TS is at the 
beginning of each row

Examples 
based

One pair based 
feature/example

Examples are folders containing one
file per feature, this file contain one 
TS 

N features per Associated to each example there is In Orange data format for TS, each 
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example a file describing all the features 
(assuming all of them are based on 
the same timestamp)

column (feature) has a header. 

Combined All data are 
organized into
just one file

The file is structured by block of 
several lines (features or examples).

This is a classical representation in 
Data Analysis, in Philae Orange “use
case”, use a variant with one 
common timeline for all the events. 

Table 1 – Formats to represent time series

Regarding the way events (i.e. values) composing the TS are  indexed  in the sequences,
there are two situations according to the role of the “timestamps”:

● First case: timestamps are not relevant and/or events are evenly spaced (regular

sampling  done  by  a  sensor  for  instance).  In  such  cases,  according  to  the  file
organization, events are implicitly indexed by an integer that is either corresponding
to the line number (column format) or the position in the row (row format).

● Second case: timestamps are meaningful  and/or events are unevenly spaced (for

instance  when  recording  a  human  activity).  In  such  cases,  the  timestamp
values/scale must be explicitly provided and coded in the data files. According to the
file organization see above, there are two possibilities:

○ Column format:  one (or several)  specific column (i.e.  feature) contains the
timestamp values.

○ Row format: a TS is composed of a list of pairs <timestamp, value>. 
It is worth noticing that in the previous table, column based representations often use explicit
timestamps,  expressed  into  one  or  several  columns  of  the  file,  while  line  based
representations often use an implicit index, corresponding to the ranks of the values in the
sequence. Finally, an important point to take into account for PHILAE is that in some use
cases the traces could have distinct  “clocks” or timestamps references and that merging
these timestamps to create a unique temporal references is not always trivial. Thus being
able to deal with multiple references coming from different sources might prove necessary
for some PHILAE processing.

3.2 GDF for PHILAE: potential use and benefits
As part of a previous project (PIA IKATS) Grenoble LIG began to develop a generic format
that is tool-independent and that captures most characteristics of data that may be used by
tools. It is called GDF (General Data Format). This format fits well the objectives of PHILAE
to enable automation of test analysis activities through generic descriptions. Actually,  the
GDF ambition seems to exceed the needs of PHILAE, as it is also intended to support many
sorts of activities including learning, data exploration and visualization. The main advantages
of GDF are:

● To  gather  multiple  input  data  and  put  together  complementary  meaning  and

semantics into a unified data format.
● To  simplify  the  “coding  step”  by  providing  extended  representational  features,

including modular types, hierarchy, etc.
● To  ensure  data  quality  and  traceability  (a  crucial  challenge)  first  by  keeping  the
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maximum  amount  of  information  and  second  by  checking  that  the  data  are
syntactically correct (i.e range, unit, precision, ...)

● To  provide  more  information  to  the  learning  tools  through  the  notion  of  meta-

information.
● To be able to convey the learning results in a homogeneous way from one tool to

another  to  create  complex  dataflows.   In  this  respect,  the  goal  is  different  but
complementary of  work like  Predictive Model  Markup Language or  more recently
Portable Format for Analytics allowing to describe and exchange predictive model
produced by statistical or Machine Learning tools.

More related to PHILAE project, the advantages of using GDF are threefold:
● By providing a clear semantic, this representation language helps to have a clear and

more complete specification of the use cases.
● The current version of GDF contains some wrappers allowing to read and export to

the classical representation language used in ML. Of course, during this translation
step some information is lost, but the wrapper does its best to generate an accurate
encoding. In this sense GDF seems to be an interesting “pivot language” …

● The representation language is one of the project’s background, developed at LIG by

a participant to PHILAE, thus it will be easier to adapt some parts of the language to
the needs of the project. For instance the header part of GDF could be improved to
provide a better representation of the description-metadata tuple (nature, origin, obs-
point, level) presented in section 2.

3.3 Brief overview of main GDF constructs for describing datasets
The full description of GDF can be found in Appendix. We just introduce here the main fields
of  GDF that will be illustrated in section 4. In GDF, a dataset is composed of three parts:

● A  profile  describing  the  semantic  of  all  features,i.e.,  variable,  TS/sequences,

patterns, etc.
● A data table using the classical matrix format observations/features,

● A set of files describing the time Series or more generally sequences that do not fit

into the data table.

The  profile provides the metadata and structure description (as in the triple identified in
section 2). It consists of two sections:

● A header, made of doctype, date, dataset name, source and optionally authors and

learning set from which this file could have been generated (as GDF can be used not
only for raw data, but also for derived results of various processing)

● A so-called dictionary, that lists the features (variables). For a trace, it would consist

of a sequence in a section called sequences.
Each event of a sequence in a trace would be described with:

● name: that should express the intended semantics

● type: number, boolean, string, enumerate, timestamp...

● domain: e.g. integer or float for a number, possibly refined with range and unit

● index: can be a timestamp or an integer
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● meta: this field can be useful for providing hints to ML tools, such as weighting the

importance of that type of element, or ignoring for classification.

Then comes the second and third parts of the dataset. PHILAE will mostly use execution
traces, and these would come as the third part. In GDF, this would typically be coded as
pointers (directory and filename) to files containing the sequences. Other types of PHILAE
information (e.g. statistics on development, code metrics etc) would be represented in the
second part (variables).

4- Overview of PHILAE case studies’ datasets and preliminary
analysis and processing of datasets
We describe the types of data that we have considered in the initial analysis of the case
studies  of  PHILAE.  We  provide  a  description  of  the  data  and  give  examples  of  GDF
descriptions when appropriate.
Each of the  three case studies is given with  different levels of information and traces.

● The Orange case study provides test logs from external interactions, monitoring of

hardware resources, and no access to the internal events of the software, or even its
structure or code (firmware).

● The Shop-scanners gives  complete control on the source-code and any observation

instrumentation.
● The School bus system provides records of usage traces in the field.

For each case study, we provide a description of the raw data, a preliminary analysis of its
content and the preparation of data.

4.1 Orange Livebox case study

Context and overview

Orange  provides  equipments  called  “Liveboxes”  that  serve  as  networking  gateways  for
communicating  devices  inside home or  office.  Currently,  there are 3 types of  liveboxes:
livebox 3, livebox 4 and livebox Pro.

Orange livebox is a router (with ADSL or optical fiber connection to the telecom operator’s
network)  that  has been produced by Orange and is  available  to customers of  Orange's
Broadband services in France, United Kingdom, Kenya, Guinea, Tunisia, and Spain. The
Orange livebox can be used for a number of purposes such as Wifi router, VoIP, and digital
TV (IPTV). As technology evolves, the expectations of customers also rise. As a result, to
ensure  the  quality,  endurance,  and  customer  satisfaction  for  these  liveboxes,  Orange
Telecom applies a performance validation test on the liveboxes. There is a dedicated testing
team called Labo Multi Service (LMS), whose main task is to validate the updates done on
the firmware provided by a company affiliated to Orange.

The LMS developed a number of performance tests which are composed of specific high-
level scripts of a dedicated tool (DriveYourTest), orchestrating middle level test scripts (called
scenarios) that are done by RobotFramework, which itself  resorts to lower level (Python)
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scripts to actually create and retrieve network protocol events. The scripts trigger a number
of navigation URLs or a number of other calls such as downloading and uploading files that
are actually performed by several concurrent devices (PCs, smartphones, set-top boxes...)
representative of a customer’s environment. The scripts behave as customers when using
liveboxes for different purposes. When a number of scripts are run in parallel they are called
scenarios. These scenarios are executed on a daily, weekly, and monthly basis at the Lab.

Figure 2 shows the architecture of the testing platform, and figure 3 shows the flow of data
among the architectural elements.

Figure 2 – Architecture of the testing platform
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Figure 3 – Data flow diagram

There are two types of traces provided in this case study.

● Test logs, with one line for each action performed by one of the devices triggered by

RobotFramework.
● Monitoring  logs,  that  periodically  sample  the  status  of  the  O/S  resources  of  the

livebox, with classical measures such as memory and CPU use, number of packets
etc.

There  is  one log  file  of  each type per  day  (24 hour  observation).  Each log  file  actually
collects all information from all test benches, so logs for Livebox3 are mixed with those of
Livebox4 and LiveboxPro, and similarly monitoring mixes information from various liveboxes
as well as set top boxes, and in fact different types of measures with different sampling
rates.
Therefore,  a  preliminary  step  in  processing  the  data  from  the  raw  log  files  consists  in
extracting the logs for one specific livebox type.

Livebox dataset and PHILAE approach

● Test logs correspond to an external observation point as it is not inside the livebox,

but is actually collected inside the test harness. Adopting the PHILAE terminology,
those  test  logs  are  simulated  usage  traces:  they  correspond  to  a  high  level
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abstraction of global user actions (from a user’s observation point) but they are still
traces from regression tests. The type of test performed is not functional testing, but
endurance testing.

● Monitoring  logs  are  traces  that  are  observed  from an  internal  observation  point,

which are not triggered by the usage workflow. They correspond to “test execution
results”, but they do not contain the test verdicts. They are just “side effects” that
need to be analyzed and interpreted. Currently, they are analyzed by test experts
using data analysis  tools,  and one potential  impact of ML techniques could be to
automate the analysis. 

Raw data 1: test logs

The livebox execution trace file records events that correspond to the executed scenarios on
each livebox. Each trace file is composed of a number of timestamped sequences of records
with over 20,000 events a day. Almost six months  of trace files have been obtained from
LMS for experimenting on the objectives of the PHILAE project. We have been provided with
JSON files as well as a more compact binary form (BSON). Each trace file corresponds to
exactly one day (from midnight to midnight) of observations, recorded in a JSON (Javascript
Object Notation) file which is about eight megabytes.

The records' data types are either categorical or numerical. The JSON format structures key-
value pairs as arrays of objects. One object in an array represents an event in the trace file.
Most events in the traces correspond to client actions, typically navigating popular URLS
such as Facebook, Ebay, Wikipedia or downloading files from the internet.
As seen below in the json example (Figure 4), an event is timestamped and contains the
measured results of a test. For example, here is a test of livebox 4 such as: metric used,
bench name, target name, (local) test status, (lab) domain type, node name (that created the
request), and the computed values.

 

Figure 4 – JSON example of an event from the execution trace
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Raw data 2: monitoring files

The monitoring files contain the records of the status of Memory (RAM), CPU, and WIFI
channel of Liveboxes while being tested. As for test logs, there is one file per day. Each
monitoring file is composed of a number of time-stamped records with over 10,000 events in
a single day file. Actually, the status of resources for various devices (liveboxes and set-top
box) are sampled at a period of around 5 minutes, but for each device, several resources are
sampled at the same time, each one corresponding to an event in the file. The record's data
types are either categorical or numerical. On a daily basis one trace file is recorded in a
JSON file which is about five to six megabytes. Figure 5 represents an event example which
was recorded on 02/08/2018 at 21:54:25 on Livebox3. 
The meaning of the fields differ from the execution traces.
More precisely, the node does not relate to an external node from the environment, and the
target is usually the intended livebox version to be monitored as shown in the example event
in the figure. The metric variable on the other hand is recording the stats of the RAM, CPU,
or WIFI Channel.
Actually,  at  a  given sampling  time,  around a  dozen different  metrics  and corresponding
values are recorded,  all  of  them with the same time-stamps.  The period for  sampling is
typically 5 minutes for a given livebox. Note also, that a single monitoring file record mixes
monitoring information for several liveboxes and other devices (such as set-top box), with
different metrics depending on the device.
Almost six months of monitoring files have been obtained from LMS for experimenting on the
objectives of the Philae project.  

Figure 5 – JSON example of a monitoring record

Analysis

The first  task on execution traces consisted in performing statistical  analysis  in  order to
observe  the  data  at  hand.  Thus,  some  simple  analytics  have  been  done  on  Livebox
execution traces in order to acquire some understanding of the data, and comparing it with
the “ideal” perception conveyed by the presentation of this data by Orange LMS.
The analysis raised a number of issues, some of them appeared linked to specific cases
known to LMS team members, and others were not really expected.

The naive analysis confirmed the overall architecture described above. A first  observation is
that on a single day, three test scenarios are run from (01 to 05-07am,  02 to 09 - 10am, and
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18  to  21-22pm).  Each test  session  continuously  runs  for  almost  six  hours.  The second
observation  is  that  three  livebox  versions  have  been  tested  (livebox3,  livebox4,  and
liveboxPro). In addition, the three tested liveboxes have a number of clients connected to
them, from client1 to client10. Besides,  the three liveboxes'  events are all  recorded in a
single execution trace file.
Unexpectedly, test execution traces of one day we considered (26/08/2018)  have a high
rate of Fail verdict, significantly on Livebox3 (see Figure 6 below).

Figure 6 – Number of pass and fail verdicts on 26/08/2018

Also,  execution traces of  the same day also have a significant  ratio  of  Error  verdict  for
Appium01 client.  Finally,  it  could be also observed that the metric,  target,  and value are
strongly correlated.

Generally  speaking  though,  any  day  would  contain  a  high  number  of  FAIL  tests,  an
observation that did not match the feedback from Orange LMS that only few (new) bugs
were discovered. FAIL status seems to be associated to local failure of a test script (e.g. by
being unable to connect to some website at a given time), not to a failure of the livebox.
After doing a number of such analyses, we considered that identifying (real) failures
from execution traces was not a task that an expert could easily do on such traces,
and even less a machine learning tool.
Therefore, we based our second step in analysing the raw data on the other raw input: the
monitoring  files.  Experts  from  the  LMS  confirmed  that  this  was  their  starting  point  to
investigate failures, as well.

To observe the data in the monitoring files, Grafana (https://grafana.com) has been highly
used by the LMS testing team. Grafana is an open platform for monitoring data analytic and
visualization. The LMS uses Grafana to observe, note and store the acquired Memory and
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CPU statistics of the three liveboxes. Through Grafana (see figure), it can be noticed that the
RAM and CPU status is monitored continuously over one week from 14-05-2019 to 20-05-
2019 for Livebox3. One important measure that is seen in Grafana statistics is the Uptime
values which show the time elapsed since last  reboot.  Figure 7 shows that  two reboots
happened during the week.

Figure 7 – Grafana screenshots showing uptime values, RAM and CPU status during a week

GDF description

Since there are actually  two datasets of  traces in  the Orange Livebox case studies,  we
provide two GDF descriptions.

We first present the GDF description of a test log (here a single day, but several files could
be concatenated).
{
    "header": {
        "doctype": ["GDF", 0.42],
        "date": "19-03-27 13:41",
        "dataset": "2018-10-14",
        "source": "philae-data",
        "authors": "Orange",
        "learningSet": []
},
    "dictionary": {               
        "sequences": [
          { "name": "timestamp",
            "type": "timestamp",
            "domain": "iso_8601",
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            "units": "seconds",
            "meta": [["ignore"]],
            "sampling": "uneven"
          },
          { "name": "Unnamed: 0",
            "type": "number",
            "domain": "integer",
            "comment": "the event number",
            "meta":[["id"]],
            "index":"timestamp"               
           },
           { "name": "bench",
             "type": "enumerate",
             "domain": "String",
             "comment": "name of the livebox",
             "range": ["LiveboxPro","Livebox3","Livebox4"],
             "index":"timestamp"
            },
           { "name": "domain",
             "type": "string",
             "comment": "One type of livebox services",
             "meta":[["ignore"]],
             "index":"timestamp"
           },
           { "name": "metric",
             "type": "string",
             "comment": "connection/disconnection/loadingtime of 
target(URL&Calls)",

  "index":"timestamp"
            },
           { "name": "node",
             "type": "enumerate",
             "domain": "String",
             "range": ["client01", "client02", 
               "client03", "mac01", "appium01",

           "client04", "stb01", "client05", 
     "client06", "client07"],

             "comment": "clients on running test scenario on livebox",
             "index":"timestamp"
           },
           { "name": "status",
             "type": "enumerate",
             "domain": "String",
             "range":["PASS","FAIL","ERROR"],
             "comment": "pass/fail/error of events",
             "meta":[["class"]],
             "index":"timestamp"
           },
           { "name": "target",
             "type": "string",
             "comment": "URLs+Calls test scripts",
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  "index":"timestamp"
           },
           { "name": "value",
             "type": "number",
             "domain": "float",
             "comment": "time taken in seconds to load,connect, or 
disconnect the target",
             "index":"timestamp"
           }
    ]
}

Then the GDF description of the monitoring files.

{
    "header": {
        "doctype": ["GDF", 0.42],
        "date": "06-03-19 13:41",
        "dataset": "2018-07-15/2019-01-22",
        "source": "philae-data-monitoring",
        "authors": "Orange",
        "learningSet": []
},
    "dictionary": {               
        "sequences": [
          { "name": "timestamp",
            "type": "timestamp",
            "domain": "iso_8601",
            "units": "seconds",
            "meta": [["ignore"]],
            "sampling": "uneven"
          },
          { "name": "id",
            "type": "number",
            "domain": "integer",
            "comment": "the event number",
            "meta":[["id"]],
            "index":"timestamp"
          },
           { "name": "bench",
             "type": "enumerate",
             "domain": "String",
             "range": ["LiveboxPro","Livebox3", "Livebox4",
                       "Lb5-MF1","Banc1-103","Banc2-103",
                       "Livebox_Dev_253","dev"],
             "comment": "name of the livebox",
             "index":"timestamp"
                
           },
           { "name": "domain",
             "type": "enumerate",
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             "domain": "String",
             "range": ["Multi-services","Fonctionnel"],
             "comment": "The type of livebox services",
             "meta":[["ignore"]],
             "index":"timestamp"
           },
           { "name": "metric",
             "type": "string",
             "comment": "WiFi,download_rate,cpu_total,mem_free ect.. of 
target(Livebox,STBPlay&P2P)",
             "index":"timestamp"
           },
           { "name": "node",
             "type": "enumerate",
             "domain": "String",
             "range": ["client01", "client02", "client03", 
                       "mac01", "monitoring", "Monitoring",
                       "client06","client07","client08",
                       "modem01","p2p01"],
             "comment": "clients running test scenario on liveboxes",
             "index":"timestamp"
            },
            { "name": "target",
              "type": "string",
              "comment": "The Livebox,P2P, and STBPLAY being monitored",
              "index": "timestamp"
            },
            { "name": "value",
              "type": "number",
              "domain": "float",
              "comment": "time taken in seconds to load,connect, or 
disconnect the target",
              "index":"timestamp"
            }   
    ]
}

4.2 Shop-scanners (FEMTO-ST)
 
Shop-scanners is a simplified but realistic application implementing a system of shopping
scanners.  These  devices  allow  customers  to  shop   autonomously,  from  product-price
recording, until reaching the checkout to proceed to the full payment.

The  workflow  is  as  follows:  the  customer  unlocks  the  device  as  he/she  enters  the
supermarket. He then takes products from the shelves and scans their barcode while adding
them to his basket. He also has the possibility to remove products from his basket.  It  is
possible that, for some products, the barcode is not recognized by the device. When the
shopping  is  complete,  he  reaches the checkout  and  the data  stored on the scanner  is
transferred to the checkout. At this step, it is possible that the cashier randomly proceeds to
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a control  check which consists in re-scanning a significant  subset of the products in the
basket, to check that no product has been "missed" during the shopping.

When interacting with the cashier, it is possible to request the assistance of a cashier:
● either manually, to add or remove products from the shopping list, and/or

● automatically if some products have not been recognized during the shopping.

In both cases the cashier has to authenticate on the checkout.

Implementations

We have  two implementations of the system:
● a Java implementation made of 4 classes that describe the scanner, the products, a

product database, and the cashier;  
● a web-based simulator, developed as a (sort of) multi-agent system which can be

used to produce the usage traces that are described hereafter.

In both cases, implementation traces are sequences of operation calls on specific objects.
The two main classes which represent the externally-visible objects are the scanner and the
cashier for which we provide a short specification below.

The scanner class

The Scanette class is composed of the following operations:

● int debloquer() unlocks the scanner. If the scanner was not blocked it returns

status code -1, otherwise it unlocks the scanner and returns 0.
● int scanner(long) scans  a  product  for  which  the  EAN13  code  is  given  in

parameter. This operation is used either to add a product to the client's cart, or to
check the products in the cart during the verification phase. It  can return -1 if the
operation  is  called  in  a wrong state,  -2  if  the  code is  not  recognized  during the
shopping phase, -3 if the product is not recognized during the verification phase. If
the product is recognized, whatever the state, 0 is returned.

● int supprimer(long) removes one occurrence of the article during the shopping

phase. If the state is incorrect, it returns -1. If the product did not exist in the cart, it
returns -2. Otherwise, the product is removed and the value 0 is returned.

● int quantite(long) makes it possible to retrieve the number of products that

exists for a given EAN13 code. If the product does not exist, the quantity is 0.
● void abandon() cancels the current transaction, empties the cart and re-locks the

scanner.
● Set<Article> getArticles() makes it possible to retrieve the set of product

EAN13 codes that are present on the cart.
● Set<Long>  getReferencesInconnues() retrieves  the  set  of  unknown

references that have been scanned during the shopping phase.
● int transmission(Caisse) performs a connexion of the scan with the checkout.

At this step, two results are possible, as the checkout may ask for a verification of the
products inside the cart. The scanner enters a verification mode, in which the cashier
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can re-scan a subset of products that are supposed to be in the cart. Otherwise the
cart is transferred to the checkout with which the session continues. This operation
returns -1 if  it  is  called  in  the wrong state,  0 if  the  data were transferred to the
checkout and the use of the scanner is over, and 1 if a verification is requested.

The following diagram (Figure 8) represents the different states of the scanner.

Figure 8 – State diagram for the scanner

The checkout class

The Caisse class contains the operations that make it possible to handle the connection of

the scanner, and manage the shopping list before proceeding to payment:

● int connexion(Scanette) handles  the connection  for  the scanner.  It  can be

invoked to signal the end of the shopping phase. In this case, it randomly returns a
verification request (10% rate) and returns 1. If no verification is requested, it returns
0. If it is invoked to signal the end of the verification, then it returns 0 and expects a
payment (except if the shopping list is empty, in which case, the checkout waits for a
cashier). If invoked in a wrong state, it returns -1.

● double payer(double) represents the payment. The parameter corresponds to

the amount paid by the client. The return value indicates the possible change (>= 0).
It returns a negative value if the checkout is in the wrong state when the operation is
invoked.

● void abandon() cancels the current transaction, and returns to the state in which

the checkout is waiting for a connection.
● int ouvrirSession() opens a session during which the cashier is authenticated,

and  can  perform manual  additions  to  (resp.  removals  from)  the  shopping  list.  If
invoked from the wrong state, it returns -1. Otherwise if the operation succeeds, it
returns 0.

● int fermerSession() closes an opened session. If invoked from the wrong state,

it returns -1. Otherwise if the operation succeeds, it returns 0.
● int scanner(long) makes it possible to manually add a product to the shopping
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list, by scanning its bar code (in parameter) directly on the checkout. If the product is
successfully scanned, it returns 0. Otherwise it  returns -1 if  the checkout is in the
wrong state, or -2 if the product is not recognized by the checkout.

● int supprimer(long) makes it possible to manually remove a product from the

shopping list.  It  returns 0 if  the product  has been successfully  removed,  -1 if  the
checkout was not in the appropriate state, or -2 if  the product did not exist in the
shopping list.

The following state machine (Figure  9) summarizes the behavior of the checkout.

Figure  9 – State diagram representing the behavior of the checkout

Usage sessions

A usage session usually starts with the unlocking of a scanner by a client, followed by a
shopping sequence in which products are scanned one by one. Then, the client reaches the
checkout to transmit the cart. If there is a verification, a cashier scans a sample of the client
cart  to  check  the  existence  of  the  products  before  proceeding  to  the  payment  on  the
checkout. Once the cart has been transmitted, the scanner is no longer necessary and the
payment can be processed on the checkout. At this step it is possible that the cashier is
requested by the client to modify the shopped products by "manually" adding or removing
references in the shopping list. The session ends with a payment.

The following state machine (Figure 10) represents the different usages of the system. In
this diagram, the diamond state represents the initial state. A usage session is considered to
be the use of the scanner, followed by the use of the checkout, after a transmission between
them and a possible control check by the cashier.  
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Figure 10 – State diagram representing the different uses of the system

Experimental data

For the experimental data, we used a set of 20 student implementations of the specification
plus one reference implementation, along with different sets of developer tests.

The simulator is available at the following address: http://fdadeau.github.io/scanette?simu

It simulates the usage of the system by a set of customers that manipulate the device as in a
real-world deployment of the system. The inner classes that are called to perform business
actions are a faithful implementation of the Java version described above. The simulator is
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used to produce the raw data that are described below.

Raw data

As the system is our own development, the content of the raw data can be easily adapted or
extended. We present below the set of data that are available.

id The ID of the entry (incremented each time an operation is called)

timestamp The timestamp of the action that is logged

object The  object  that  is  considered  of  type  scanner  (Scanette)  or  checkout
(Caisse)

method The operation/method that is invoked, which depends of the object that is
considered

parameters A list of parameters, possibly empty

return value The  return  value  of  the  operation  which  indicates  the  behavior  of  the
operation that was activated

  
As  the  notion  of  session  is  essential  to  delimit  one  usage  of  the  system,  we  add  a
complementary  parameter  which  identifies  the  session.  This  preprocessing  step  is
mandatory.

session The ID of the session for the considered data set

The  following  table  represents  a  simple  usage  session  in  which  the  client  scans  some
products, including one unknown reference, and then reaches the checkout. Although there
is no verification, the checkout requests a control check by the cashier due to the presence
of  unknown  products.  The  cashier  opens  the  session  and  manually  adds  the  missing
reference to the shopping list. The client then proceeds to payment.

1 ; session1 ; 1559635938725 ; scan1 ; debloquer ; [] ;  0
2 ; session1 ; 1559635947081 ; scan1 ; scanner ; [8718309259938] ; 0
3 ; session1 ; 1559635969806 ; scan1 ; scanner ; [3570590109324] ; -2
4 ; session1 ; 1559635974089 ; scan1 ; scanner ; [3520115810259] ; 0
5 ; session1 ; 1559635987261 ; scan1 ; transmission(caisse3) ; 0
6 ; session1 ; 1559635987262 ; caisse3 ; connexion ; [scan1] ;  0
7 ; session1 ; 1559635987263 ; scan1 ; abandon ; [] ; undefined
8 ; session1 ; 1559635995456 ; caisse3 ; ouvrirSession ; [] ; 0
9 ; session1 ; 1559636011475 ; caisse3 ; ajouter ; [3570590109324] ; 0
10 ; session1 ; 1559636015547 ; caisse3 ; fermerSession ; [] ; 0
11 ; session1 ; 1559636024337 ; caisse3 ; payer ; [25] ; 4.3799999999999
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GDF profile of the dataset

We  provide  hereafter  the  profile  of  the  dataset  described  as  a  GDF  file  named
profile.json

{
  "header": {
      "doctype": ["GDF", 0.42],
      "date": "19-06-04 10:49",
      "dataset": "scanette0",
      "source": "PHILAE project - scanette",
      "authors": "F. Dadeau",
},
"dictionary": {
  "variables": [
     { "name": "id",
       "type": "number",
       "domain": "integer",
       "comment": "entry identifier",
       "meta": [ ["id"] ]
     },
     { "name": "sessionID",
       "type": "number",
       "domain": "integer",
       "comment": "usage session identifier",
     },
     { "name": "timestamp",
       "type": "date",
       "comment": "timestamp of the operation call",
     },
     { "name": "object",
       "type": "string",
       "comment": "the object instance on which the operation is called",
     },
     { "name": "operation",
       "type": "string",
       "comment": "the name of the operation that is invoked on the object",
     },
     { "name": "parameters",
       "type": "string",
       "comment": "a JSON list of parameters (usually integers)",
      },
      { "name": "returnValue",
        "type": "string",
        "comment": "the JSON value returned by the operation invocation",
        "meta": [ ["class"] ]
      }],
   "sequences": [],
   "patterns": []
  }
}
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4.3 USC: Bus System 

Goals

The goal of this case study is to use AI and Machine Learning techniques to fully automate
the model-based testing of an existing web service.  Starting from the API documentation of
the  web  service,  plus  example  traces  of  interactions  with  the  web  service,  we  will
automatically build a simple model of the 'normal' behaviour of the web service, as well as
running machine learning algorithms on them to identify higher-level abstract patterns in the
test sequences.  Then we will use that normal-behaviour model to generate several kinds of
tests:

1.  regression tests,  which just replay the given traces as executable tests.  This is
useful for testing that existing behaviour still works after system updates;
2.   robustness tests, which systematically insert various common types of errors (such
as missing values, or out-of-range values) into traces in order to test the robustness of
the web service;
3.   model-based tests, these use more abstract behaviour models learned automatically
from the example traces, in order to generate tests that fill in the missing gaps identified
by the model.  This can help to expose missing cases in the logic of the web service.

A key goal is that all  these kinds of tests should be able to be generated and executed
automatically, at the push of a button.  This gives a gentle learning curve, which means that
users can get the benefits of basic testing techniques without having to learn any new skills,
and  of  more advanced  model-based testing  techniques  simply  by  learning  how to  read
models of their own system, rather than the more difficult skill of writing models.

Context and Overview

We want to test an existing web service for recording bus runs, where clients swipe an ID
card as they enter or leave the bus, so the server can track progress of the bus in real time,
as well as the entry and exit of each client.  For bus routes where the clients are school
students or disabled people, the system also has the capability to notify the parents/carers of
those clients via text messages or email, etc.

The scenario is that each bus driver has an iPad in the bus, with GPS facilities,  a card
reader for reading client bus-cards, and mobile connectivity to the web server.  The following
diagram shows  the  general  architecture  of  the  existing  system (in  black),  and  how our
proposed Automated Testing approach (in red) fits into that architecture.
 
The  central  web  server  maintains  a  database  of  companies,  bus  runs,  clients,
parents/carers, etc.  The details of this database are out of scope of this testing project and
should not need to be known in order to generate tests.  But note that interactions with the
server just ADD records to the database, so for testing purposes it is possible to reset the
database back to a known state simply by deleting all new records after a certain date.

Figure 11 shows the architecture of the system.
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Figure 11 – Bus system architecture

Typical Scenarios

 
For this project, we will focus on testing two bus scenarios: pick-up runs and drop-off runs.
In both these scenarios,  the set of  clients is known in advance, and all  clients must be
dropped off or picked up at a central location.
The typical operation of a bus pickup run is as follows:

● The driver logs on to the iPad, which records his username and password for the

duration of the run.  The iPad sends a  Login message to the server, which responds
with a set of safety questions that the driver must answer correctly, plus a list of bus runs
that the driver can choose from.
● the driver answers the safety questions.  These are sent to the server for validation in

a ConfirmPreCheck message, which replies with a yes=0 or no=1 (plus error message)
status.  (This step can be skipped if there are no safety questions).
● the  driver  then  chooses  a  bus  run  number,  which  is  sent  to  the  server  in  a

GetManifest message.  The reply to this message contains the list of client information
for that run (client IDs, addresses, carer contact details, etc.);
● the  driver  then  drives  the  bus  along  the  run,  and  the  iPad  sends  a  SaveGPS

message  to  the server  each  minute  with  the current  GPS location,  speed  and  time
information, so that the server can track the bus location.
● the driver stops and picks up clients at each location.  Each client taps their ID card

as they enter the bus.  This sends a CheckIn message to the server, including the time
of the pickup and the GPS coordinates of the location.
● alternatively,  if  a  client  fails  to  appear  for  pickup,  the  bus  driver  can  send  a

MarkAbsent message to the server to indicate that the client was absent.
● optionally, if an incident occurs, such as the bus breaking down or being delayed in
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heavy traffic, the driver can send a  Notify message to the server to inform a  contact
person about the delay, and possibly send a notification to all the carers of the clients
who are waiting for pickup.
● or the driver can send a ReportIncident message about a client discipline issue.

● when the bus reaches the central drop-off location, all clients exit the bus and tap

out.   (Or alternatively  the driver can press a button to send a single  BulkCheckOut
message,  which  sends  the  IDs  of  ALL the  clients  on  the  bus,  but  we  ignore  bulk
checkins/outs in this simplified description).
● finally  the  driver  logs  off  the  iPad  and  exits  the  bus.   This  does  not  send  any

message to the server,  as the web service is stateless (there is no 'connection'  that
needs to be shut down).

A bus drop-off run is similar, except that the role of  CheckIn and  CheckOut messages is
reversed.

Trace Analysis and Test Generation

We have obtained one day of sample bus run traces from the bus software company, and
have anonymized them to remove client details.  This gives a single 2.5Mb file containing a
single trace of all the events for the whole day, where each event is represented by an XML
structure whose content is dependent upon the type of event.

Stage 1: The first stage of analysis was to break this single trace up into many different
traces, based on the IP address of the bus where each request originates from.  This gave
several  hundred  traces.   We  then  experimented  with  several  clustering  algorithms  and
approaches, to identify the most common kinds of traces.  One useful clustering algorithm
was to use a 'bag-of-words' approach to code each trace, and then K-means to perform
clustering.  This clearly identified the most common groups of traces, and the differences
between the groups generally had clear real-world importance.  By choosing one trace from
each group we were able to obtain a small set of traces that were suitable for regression
testing.  By varying the K parameter to the K-means algorithm, we could easily control the
size of this regression suite.

Stage 2: After discussing the above clustering results with the bus software company,  it
became clear that identifying traces based on IP addresses was undesirable (because the IP
address of a bus changes as it moves between different cellular environments).  Our second
approach was to identify traces based on the bus driver ID.  This gave a smaller number of
more complete traces, all showing similar sequences of behavior.  The clustering approach
(based on 'bag-of-words' plus K-means) was still  able to identify useful groupings of the
traces, which reflected important real-world distinctions. 

Stage 3: Our current approach (on-going) is to investigate the sequencing of operations in
the traces in more detail, to learn a probabilistic finite-state model that can be used for test
generation of sequences of abstract web service operations.  In parallel with this, we are
also  investigating  various  machine  learning  algorithms to  learn  how to  predict  the  input
values for each web service operation.  We expect that combining both these models will
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allow us to generate a richer variety of model-based tests that can start to move beyond
simple regression testing, into robustness testing and model-based testing.

GDF Description

The  analyses  described  above  were  done  directly  on  the  raw  data  trace  from the  bus
system.  The format of this raw data is a single chronological trace per day (including all
events for all buses), with each event represented as an XML dump of a web service query
and the resulting response.  The structure of each response is different for each kind of
event, as different data is returned to the bus.  This raw trace format does not fit easily into
the current GDF structure.  There are several different ways in which the raw traces can be
transformed into GDF format, such as a separate GDF file for each bus, or a single GDF file
with each row of that file being a complete trace for one bus.  We are currently investigating
the tradeoffs of the various approaches, to determine which of these views of the raw data
will provide the best interface to the various machine learning algorithms.   

Bus System Conclusions

We have successfully analysed a set of real-world traces from customer interactions with a
web service.  We have developed a simple algorithm that can choose a given number of
representative  traces  for  regression  testing.   The  algorithm  uses  very  little  domain
knowledge  (just  the  choice  of  using  'username'  to  split  the  traces),  so  is  likely  to  be
applicable to other web services.  The next stage will be to infer richer models of the traces,
to move beyond regression testing into robustness and model-based testing. 

5- Conclusion
Since the initial  phase of  PHILAE,  the partners have worked on the three case studies
described in this document  in order to identify issues for data curation and preparation. This
operation  is  typical  in  ML,  where one goal  is  to  prepare  data to  train  ML models.  This
document details the dataset available from those case studies, relating them to the PHILAE
approach  of  leveraging  execution  traces  and  other  data  associated  to  development  for
extracting relevant traces, enabling workflow retrieval related to regression testing issues.
The case studies provided by the PHILAE partners are diverse, and so are the types of data
available.  This  resulted  into  two  proposals  for  analyzing  and  presenting  the  datasets
available:

1. A taxonomy to characterize the types of data formats to be used for execution traces
(section 2)

2. A generic framework (GDF) for the description of datasets for ML tools (section 3)
The taxonomy associates key characteristics such as metadata about the available datasets,
to  trigger  various  processings in  PHILAE tools.  GDF (General  Data  Format)  provides  a
generic format for datasets that is
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● independent of specific ML tools, with converters to popular formats;

● usable at various stages of data processing, both for input and output formats;

● able to associate metadata (e.g., from the taxonomy) and some semantics with the

dataset, and to describe the data organization.
Being  able  to  provide  a  common  framework  for   various  case  studies  is  essential  for
developing PHILAE tools.. It is known that data preparation is an important step (and often
time consuming) before applying ML tools to perform clustering or classification tasks. The
first attempt presented in section 4 indicates that we will need further generalization of the
preparation  tasks  to  come  up  with  a  global  methodology  for  this  step  of  the  PHILAE
approach.

The finalization of deliverable D1.1 concludes the first phase of the PHILAE project, In this
document, we focused on 3 main points:

● Data acquisition exploration, analysis and preparation for machine learning, for
clustering execution traces in particular;

● Study a common representation format (GDF) for PHILAE tools;

● Case studies examination and experiment.

Our conclusions are:

1.  The  PHILAE  initial  vision  which  was  to  extract  information  from  test  and
operational execution traces is relevant for the industrial partners of the project.

2. By analyzing the various formats required for training ML models, it appears that
software execution  traces are  difficult  to  handle  without  too many simplifications.
Further  research  activities  are  thus  necessary  to  develop  a  viable  approach  for
learning from traces.

3. The three case studies provided in the PHILAE project are adapted to the PHILAE
vision  and  foster  interesting  discussions  among  the  partners.  The  generic  GDF
format offers us an appropriate initial tool to capture relevant information from the
traces and will serve to feed the training process of ML tools employed in the project.
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Appendix

GDF: General Data Format
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General Data Format (GDF)

Date: 18th december 2018
Revision: V 0.5
Author: G. Bisson, J. Marinescu, S. Alkhoury
Project: IKATS
Document status: draft

Changes done with respect to version 0.46
Description Sections concerned
Description of differences between variables and patterns are better explained. 4.3
Introduce a new property type in the pattern to make more explicit the meaning of a pattern. 4.3
Introduce some examples, based on HARP, to explain how patterns are coded. 4.3
Introduce the new property confidence for the variables and sequences. 4.1, 4.2
Correction of many typos as usual.

1. Context and objectives

This document describes a General Data Format (GDF) allowing to represent the data sets (i.e learning, validation,
test, …) used in the learning & visualization tools developped by the LIG for IKATS project. Along with the classical
ordinal and nominal variables, this format allows to represent datasets containing Time Series (TS) and more
generally ordered sequences of values. Furthermore, it allows to store the discriminant patterns (i.e. small kind of
regular expressions) that can be extracted from the sequences. Here these patterns are produced by HARP
algorithm (Heuristical Approach to Research Patterns). Other possibilities allowing to improve the representational
capacities of GDF would be introduced in future releases, preliminary versions of some new options are discussed in
the different annexes of this document:

Annex A : Definition of composite types (i.e combinations of basic types),
Annex B : Notion of object allowing to express relational information between observations,
Annex C : Storage of hierarchical clustering results using extensions proposed in Annexe B.

Ultimately, the goal of this format would to be to express a large spectrum of the data used in ML and in some cases
to represent the results produced by the learning systems when they correspond to an “enrichment” of the initial
data. When defining such kind of general format there are several requirements to fullfilled as explained in this page
data format should be:

Rich enough to represent and defined data types and application domain dependant information.
Compact enough to not waste storage for large data sets.
Be readable by various classical learning tools and by human being.
Parts of the data can be transferred independently and easily to another format.
Conversely, the other classical format must be simple to import or transform.
Be textual as to enable munging using system/shell tools.

At first glance, defining a new representation language seems a little bit useless since, as we will see in section 2,
many “general” data formats already exist. However, these formats were mainly defined to represent the “learning
set” of the current (statistical) learning tools and are generally 1) poor in terms of what is expressed since they limit
themself to only represent information directly used/usable by these tools, 2) consequently very few information are

https://www.quora.com/What-are-standard-formats-for-sharing-machine-learning-data


retained concerning the semantics of the data and more generally about the specificities of the application domain
and 3) these formats are mainly seen to represent “input files”, forgetting that in some cases datasets can be seen as
the output of previous learning processes. Thus, in the context we are pursuing several goals allowing to:

Gather multiple input data : put together complementary meaning and semantic into an unified data format.
Simplify the coding step : by providing extended representational features.
Ensure data quality and tracability : (a crucial challenge) first by keeping the maximum amount of information and second
by allowing to check that the data are syntaxically correct (i.e range, unit, precision, …)
Provide more information to the learning tools : that could lead to explore new kind of learning approaches, for instance to
deal with dimensional analysis, new sort of data, …
Convey the learning results : in an homogeneous way from one tool to another to create complex dataflows.

We need to emphasize that our goal is not to represent any kind of results/models produced by a learning process,
but just those that can be seen an enrichment of the input data. A typical example of that use is are clustering
algorithms, such K-means, whose output can be seen as an addition of a new attribute(s) in the learning set
expressing observations’ category. In this respect, our goal is different but complementary of work like Predictive
Model Markup Language or more recently Portable Format for Analytics allowing to describe and exchange
predictive model produced by statistical or Machine Learning tools.

In this document, in parallel of describing semantical information managed with GDF, we are focusing on the notion
of “text file” representation since they is the most portable and general way to store data. Nevertheless it is would be
very easy to have a “database” version of the format in which all of pieces information will be managed by different
tables.

2. State of the art

2.1 Classical data format

In Machine Learning (or in Data Analysis) a set of observations, classically named Learning Set (LS), is generally
expressed as a table (matrix) in which rows represent observations (examples) and columns features (variables).
Concerning the file format to use to represent this table into a file there are several possibilities, among the most
popular we find:

Pure CSV file in which the semantic of the features are mostly described with a text document independently from the
dataset itself as in the UCI repository. Most of the classical ML libraries (scikitlearn, Panda, R, …) are able to use this kind
of representation along with some tools to perform (complex) modifications or filtering while reading the data.
ARFF files used by Weka which allows to declare the features (type and in some case the range) used in the data set.
Amazon ML format also allows to declare the type of the attributes using a “Data Schema”, the data themself being
classically written using a CSV file.
Orange format that is based either on three (old version) or one (new version) header lines in the CSV file.

ARFF, Amazon and Orange formats are interesting but they provide little information about features’ contents and
their semantics. Indeed, the set of types proposed is limited to the standard ones (number, enumerate, string,…) that
are closer to computer language types than to a way to represent semantical information. In ARRF format is it
possible to declare the range for nominal values.
In GDF we propose to manage a larger set of possibilities (cf. 4.1) allowing to express:

Raw values that appear in the observations, that classically belong to three families:
Quantitative values allowing to measure or to count some quantities.
Ordinal values allowing allowing to rank some information or to express a preference.
Qualitative values allowing to express some properties or to provide data.

Complex values that correspond either to (still missing in this version):
Composite set of data, for instance the 3D coordinates which are a mixture of three raw values X, Y, and Z, or
geographical position expressed with latitude and longitude.
Generalized values that are produced by agregating/summarizing different values. These data can be for instance the

http://dmg.org/pmml/v4-3/GeneralStructure.html
http://dmg.org/pfa/docs/motivation/
https://archive.ics.uci.edu/ml/index.php
file:///Users/gbisson/Documents/Mne%CC%81mosyne/Projets_divers/PIA%20iKATS/GDF/(http://www.cs.waikato.ac.nz/ml/weka/arff.html)
https://docs.aws.amazon.com/machine-learning/latest/dg/creating-a-data-schema-for-amazon-ml.html
https://docs.orange.biolab.si/3/visual-programming/loading-your-data/


result of a clustering method. For each type of data there are many ways to represent such agregations: for instance a
set of numbers can be represented such as an interval, the parameters of a statistical model, an histogram, etc.

2.2 Representation of Time Series

To represent TS there is no universal format. In practice, as explained in the table below, data structure in CSV files
can be done following three main approaches depending on whether data are mainly organized around the notions
of features or examples or both of them. In the two first approaches, TS can be described in the files using either a
row format or a column format. In GDF, in order to help the user to reuse existing datasets, we are able to deal with
all of these representations (see section 6).

Data
structure

Each File
contains Organization of the different files Observation/Exemple

Features
based

One pair
example/feature

Features are folders containing one file per
example, this file contain one TS that can be
described either with row or column format

Initial proposition of CS ?

N examples per
feature

Associated to each feature there is a file
describing all the examples, in this file TS are

oftenly described using row format

UCR data format (only one
feature in this case) moreover,

class of the TS (supervised
learning) is provided at the

beginning of each row

Examples
based

One pair
feature/example

Examples are folders containing one file per
feature, this file contain one TS that can be
described either with row or column format

-

N features per
example

Associated to each example there is a file
describing all the features (assuming all of them
are based on the same timestamp), in this file TS

are oftenly described using column format

In Orange data format for TS,
each column (feature) has an
header. The same with Airbus

2 with 4 columns: 2
timestamps, ground speed

and heading

Combined
All data are

organized into
just one file

The file is structured by block of several lines
(features or examples). A classical representation
used in statistics is to store from line 0 to N–1 the

first example, N to P–1 the second one, etc. In
this representation columns are the features.

This is a classical
representation in Data

Analysis, here we call this
format “DAF” (Data Analysis

Format)

Regarding the way events (i.e. values) composing the TS are indexed in the sequences, there are two situations
according to the role of the “timestamps” associatd to these events:

First case: timestamps are not relevant and/or events are evenly spaced (regular sampling done by a sensor for instance).
In such cases, according to the file organization, events are implicitly indexed by an integer that is either corresponding to
the line number (column format) or the position in the row (row format).
Second case: timestamps are meaningfull and/or events are unevenly spaced (for instance when recording an human
activity). In such cases, the timestamp values/scale must be explicitly provided and coded in the data files. According to
the file organization see above, there are two possibilities:

Column format: one (or several) specific column (i.e. feature) contains the timestamp values.
Row format: a TS or sequence is composed of a list of pairs <timestamp, value>. This special format will not be used in
GDF to store the temporal data. However it is possible to store the sequences and their associated timestamps into
different files using the row format (see section 6 for more details).

Finally, it worth notice that in the previous table, column based representations often use an explicit timestamps,
expressed into one or several columns of the file, while line based representations often use an implicit index,
corresponding to the ranks of the values in the sequence.

2.3 Representation of sequences

http://timeseriesclassification.com/index.php
http://orange3-timeseries.readthedocs.io/en/latest/


The notion of TS can be easily generalized to the notion of sequences corresponding to series of ordered values. In
such case, the values of the sequence can have also either an implicit index based on the position of the values in
the sequence or an explicit index based on any ordered scale (distance, temperature, …).

As for the TS, this kind of data is very classical. For instance, that is the case of a DNA sequence in which each
“base” (among A, T, G, C) can be indexed by its codon number. Moreover, in some cases, each value of a sequence
can be indexed by multiples correlated scales: for instances, in geology, to describe a core sample (une “carotte” in
french) each values can be indexed both by the distance to the ground and by its corresponding geological time.

3. Definition and organisation of a dataset

In the current proposal a dataset is composed of three parts:

A profile describing the semantic of all features (i.e variable, TS/sequences, patterns, etc),
A data table using the classical matrix format observations/features,
A set of files describing TS or more generally sequences that doesn’t fit into the data table.

Of course, all these information could also be organized in a database but we focus here on a file based organization
allowing to have a portable external format for the dataset.

In this document, the characteristics of a the profile are based on JSON format. For the other files we can use a
classical csv file. Others, more human friendly possibilities, exist such as YAML. However, as the hereunder format is
flat and homogeneous enough, another solution to ease writing/editing for a human being, is to allow the user to
code the full profile using a classical spreadsheet. Such approach , base on using XSLS or ODF formats is explored
in Annex D of this document.

4. Description of the dataset : profile part

The profile is composed of two parts:

A header part providing some general (meta)-information about the source of the dataset. Let’s notice that we use here a
very simplified/modified version of the Dublin Core. It would be interesting to discuss if more compatible version would
make sense or if the current version is enough.
A dictionary part describing the set of features used in the Learning Set, this dictionary being divided into three families of
componants: variables, sequences and patterns. Of course, a dataset can contain just one or all of these families (see also
Annex B introducing an extension to deal with multiple dictionaries).

In the rest of the description, the property with a leading “*” are always mandatory.

header : {
 *doctype: ['GDF', '0.46'],   // representation language and version
 *date: 'yy-mm-dd hh:mm:ss',   // creation date of the current file
 *dataset: 'official name of the dataset', // id of the dataset
 *source: 'references/origin of the dataset", // references to the data 
 authors: 'name of the persons who collected data", // references of the authors
 learningSet: ['learningset1', ...]  // learning set(s) possibly used to generate this one
 }
 
dictionary: {
 variables: [ ... ]  // List of the "classical" variables (i.e. mono-valued)
 sequences: [ ... ]  // List of the TS or sequences
 patterns: [ ... ]  // List of the patterns and their associated sequences
}

https://en.wikipedia.org/wiki/Core_sample
https://fr.wikipedia.org/wiki/JavaScript_Object_Notation
https://fr.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/Dublin_Core


doctype: identify the representation language (here GDF) and the version used.
date: date of creation of the file. This is useful to keep track of the initial creation date when the data are copied on
different support. We follow a subset of norm ISO 8601.
dataset: official name (ID) of the dataset.
source: information about the dataset and identifier (URL, ISBN, …) allowing to get more information
authors: names of people who collected and/or prepared the dataset
learningSet: List of the learning set (in the current format) that have been used to generate this file. Of course this
information only makes sense when this data set is the results of a workflow. For instance in IKATS, HARP tool (pattern
generator) reads one or several LS and produces a new LS containing the patterns that have been generated. Thus, the
reading procedure of the learning tool could be (optionally) able to read recursively these learning sets while reading the
current one, the “full” information being providing by the merge of all the files (see section 7).

4.1 Variables section

Variables are corresponding to the classical features that are used in Machine Learning to describe a simple
quantitative, ordinal or quantitative value (i.e. not Time Series, sequences or patterns).

variables: [
 {*name:  [var1, var2, ...],
  *type:  'number|boolean|timestamp|string|enumerate|...',
  *domain: 'integer|float|...'
  range:  [ ...],
  units:   'm',
  relevance: 2.0  // the relevance is expressed as a float, default value is 1.
0
  confidence:    0.8  // perceived or real quality of the information
  comment: 'other information about these variables',
  meta:  [['class'] ['id'] ['ignore'] ...]
 }, ...]

name: variables names. Here we can define the characteristics of several variables at the same time when all of these
variables share the exactly same definition. This is just a convenient way tog gather similar information.
type: allows to declare the GDF type of the values stored in the variable (see hereunder table)
domain: allows to declare the way values are represented in the computer. For instance, with GDF type number, values
can be represented by an integer or a float (other possibilities could exist such as: complex, probability, …). This property
is mandatory with with three exceptions for GDF types : Boolean, String and Picture whose domain is “self defined”.
range: allows optionally to express the possible/relevant values of the type according to its domain. When the range is
missing any value compatible with the domain are acceptable. The range is mandatory only for the following GDF types:
modular, ordered, hierarchy and enumerate. Beyond the semantical aspect, knowing the range a value is relevant to
control de input data and in some ML processes for instance to normalize a similarity.

Properties type, domain and range are, in most of the cases, correlated and allow GDF to represent the three main
families of values whose semantic is classical in Data Analysis, that is to say:

Quantitative values: these values allow to measure or to count some quantities. In GTD, types number and modular
belong to this family. Clearly many other types (or domain) could be defined such as interval or normal distribution to
represent data expressing some variability but these representation are more used to express set of data rather individuals.

Number type can be either float or integer or a restricted interval of these sets. With floating number it is moreover
possible to declare the precision (i.e number of decimal) of the value.
Modular type is a reference to the modular arithmetic in which values are represented modulo a given constant. These
kind of data are very classical, the most classical examples being the way time is handled modulo 24 (the value
following 23h being again 0h) or the measure of an angle in degree which is done module 360. This type of data must
be treated in a specific way: for instance, with a learning tool using a distance measure on an angle, distance (360, 0) is
smaller that distance (360, 350). Let’s notice that Circular statistics is a relatively new domain of statistics (~1980)
dealing with this kind of data.

Ordinal values: these values allow to rank some information or to express a preference. In GTD, types date, timestamp,
mark and ordered belong to this family.

Date type allows to represent a date. However, this type is not intended to represent a timestamp of a time series, this
is the role of the next type. We accept two formats widely used : Unix time and iso 8601

https://fr.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Directional_statistics
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601


Timestamp type allows to represent any “time mark” of a temporal sequence. The format can be either a the one of a
real date or a numerical value indicating any period of time.
Mark type is a generalization of the notion of “scale” that we already have in the timestamps. It can accept any kind of
units (time, distance, temperature, …).
Ordered type allows to describe a list of numbers or symbols. When the representation use a list of N symbols, their
underlying semantic is similar to the one of a list of integer from 0 to N–1. Thus it is for instance possible to compute a
numerical distance between two any symbols.
Hierarchy type allows to represent a hierarchy (tree) of symbol. Thus operation of generalization and specialization are
possible and a learning tool can compute a distance, based on the length of the path, between two any symbols.

Qualitative values: these values allow to express some properties or to provide data. In GTD, types boolean, string,
enumerate and picture belong to this family.

Boolean type expresses a boolean value, thus domain and range are totally defined .
String type expresses a string with a possible control on the maximum length.
Enumerate type allows to describe a set of symbols.
Picture allows to express a filename containing a picture or photo.

The following table sums up the basic types and their associated domain and range along with some examples.



GDF Type Possible domain Example of range Example of value

number integer
float

none
[–3, 16]
[3.14, 18.0]

512, 2396.425, 3.45e+12
–2
5.67

modular integer
float

[0, 23]
[–180.0, 180.0]

10
–45.76

date unix_time
iso_8601

none
[0, 250000]
[“1 jan 2012”, “31 dec 2012”]

125000
“23 jan 2012 17:56:00”

timestamp

integer
float
unix_time
iso_8601

none
[0, 4000]
[0.0, 60.0]
[1200000000, 2400000000]
[“1 jan 2010”, “31 dec 2017”]

2308
23.614
1270990000
“23 jan 2012 17:56:00”

mark integer
float

none
[0, 10000]
[–273, 10e9]

10, 34.43
3
4.56e6

ordered integer
string

[5, 6, 7, 8]
[“small”, “medium”, “large”]

8
“medium”

hierarchy string [“size” [“small” [“xs”,“s”,“m”]][large]]  “m”

boolean N/A - true

string N/A none
10 (string max length)

“Once upon a time …”
“Very short”

enumerate string [“tv”, “radio”, “web”, “paper”] “web”

picture N/A - “face45.jpg”

precision allows to express the precision of the float number (when used) for types: number, modular, timescale and mark.
units allows to express the unit of the variable when this information makes sense. When possible, this information should
be coded in order to be compliant with International System of Units notation. For a timestamp, unit is by default the
second “s” but can be redefined by the user.

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/International_System_of_Units


relevance: semantical relevance or preferences (expressed as a numerical weigth) associated to the current variables. This
information can be used for visualization purpose (display order of the variable) or during the learning process, for
instance: in a distance based learning tool (for instance, in k-NN algorithm) to weight the importance of a variable, or to
solve a “draw” between some variables in a decision tree. When missing, Default value for relevance is 1.0 (floating
number).
confidence: express the “quality” of the variable, that is to say in which extent the information provided by this variable
are trustable. The value is a probability in the interval [0.0, 1.0]; when missing, Default value for relevance is 1.0 (full
trustability).
comment: description of the role of the (set of) variable(s) that can be used in the interface to explain some information
about the meaning of a result for instance.
meta: List of meta information indicating the role of the current variables mainly according to the learning tasks. Each meta
information is a list [‘keyword’, ‘value1’, ’value2,], however values are optional in many cases. The list of meta information
for the variables is given in the hereunder table but this list can be extended in the future. The most generic solution is to
consider this field as a list of “open” pairs [keyword values] whose information are used (or not) by the learning tool.

Keyword Semantic of the meta-information

[CLASS] 
Indicates that all the variable(s) in the block express the class to be predicted (supervised learning).
Classically, there is only one variable having this metadata but it is possible to declare several times in
the LS that a variable is a class when we want to do a multi-target classification. Let’s notice this
keyword is equivalent to “c: class attribute” in Orange format.

[ID]

This indicates that the content of the variable(s) are used to “name” the current example when reading
a data table. If several variables have the ID metatag the name of the example is the concatenation of
all these values separated by an underscore. Of course, learning/viz tools are free to internally use or
not this information to name the examples. Let notice that declaring a variables as an ID imply that it
is not used during the learning (imply IGNORE meta). When no variables are declared with an ID
metatag, the loader classically uses the line number of the examples in the dataset has its ID.

[IGNORE
<value1>, … ]

All variable(s) of the block or just those in the list are not explicitly used to learn. Nevertheless, they
are loaded into memory. Let’s notice this keyword is equivalent to “m:meta attribute” in Orange format.

[SKIP
<value1>, … ]

All variable(s) of the block or just those in the list are not loaded into memory. Let’s notice this keyword
is equivalent to “i: ignore attribute” in Orange format

[STRENGTH]

Indicates that this variable is used to set a weight to the observations (examples) in the data tables.
Classically the weight is coded as number but in GDF we make no assomption about its type. This
meta information must appear only once in the profile. This information can be used by the learning
tool to focus the learning process on some observations.Let’s notice this keyword is equivalent to “w:
instance weight” in Orange format

[PROTOTYPE]

Indicates that this variable is used to indicate that an observation in the data tables is a prototype.
This notion is relevant if GDF file is the result of a clustering algorithm: a prototype is an observation
which is a good representative of a cluster (typically the centroid of K-means). Classically the
prototype property is coded as a boolean but in GDF all possible type can be used. As for the weight
this meta information must appear only once in the profile.

4.2 Sequences section

This section allows to describe the sequences or TS that appear in the data table. Most of the properties are
identical to the ones found in the previous section to describe the variable, but there are two kinds of information
indicating the way values of the sequence are indexed (timestamps or marks) and sampled.

sequences: [
 {*name:  [seq1, seq2, ...],
  *type:  'number|boolean|timestamp|string|enumerate|...',
  *domain: 'integer|float|...'
  range:  [ ...],
  units:  'kg',
  *index: [timestamp_sequence_name|mark_sequence_name]|'integer',
  *sampling: either a number, 'uneven' or 'unknown',
  relevance: 2.0  // the relevance is expressed as a float, default value is 1.
0
  confidence:    0.5  // perceived or real quality of the information
  comment: 'other information about these sequence',
  meta:  [['ignore'] ['skip'] [inline]]



 }, ...]

name: list of sequences names.
type, domain and range: type of the values composing the sequences values and their range. The list of possible types is
the same as for the variables (see section 4.1).
units allows to express the unit of the sequence values (see section 4.1). There is no semantical verification of the
correctness of the unit. Thus when the role of the sequence is “derivative” (see below) there is no checking that the unit is
in coherence with the derivation done.
index allows to declare the scale associated to the sequences of the current block. Caution: a sequence whoe type is
declared as timestamp or mark cannot have an index since THEY ARE the indexes. There are two possibilities for an index:
1. either the time series use an implicit numerical index (row number or column number according to the representation

format, see sections 2.2 and 6) to ordered the events: in this case the value is the string “integer” which is a keyword.
2. or the time series use one or several explicit index represented by others sequences (i.e. a list of timestamps or marks)

and we need to provide the name of these sequence expressing this scale. Let’s notice that these sequences must
have been declared previously in the profile and the type of their values must be equal to either “timestamp” or
“mark”. In the data part all the sequences associated to a sequence of indexes must have a number of values equal or
smaller: in other term an index can be longer that the sequences using it but not shorter!

sampling allows to indicates the sampling rate (or more generally the precision) of the sequence when the data are
coming from a sensor or repeated measures. Caution: this property only concerns sequence of type timestamp and mark
(i.e. sequence that will be used as an index). There are three possibilities of sampling:
1. The sampling is regular (synchroneous) and we can provide the sampling rate. Let’s notice that the unit used to

express the sampling rate is the same as for the values.
2. When the sampling is asynchroneous (for instance if we have recorded user events on a time scale) this field will

contains the string ‘uneven’.
3. Finally, it is possible to indicate that the sampling rate is just ‘unknown’.

relevance: semantical relevance/preference (i.e. weigth) associated to the current variables (see section 4.1 for more
details). Default value for relevance is 1.0 (floating number).
confidence: express the “quality” of the sequence, that is to say in which extent the information provided by this feature
are trustable. (see section 4.1 for more details)
comment: description of the role of the sequence or the « long name » that can be use in the interface to comment a
result.
meta: List of meta information indicating the role of the sequences for the learning task. Generally when the option
“weight” is used (see above) for a given sequence SEQ, it would be interesting to add automatical the meta information
[‘ignore’, ‘SEQ.weight’] to indicate to the learning tool that this information is not to used as a “real” feature during the
learning step.

Keyword Semantic of the meta-information
[IGNORE
<value1>, …
]

All sequence(s) of the block or just those in the list are not explicitly used to learn. Nevertheless, they
are loaded into memory.

[SKIP
<value1>, …
]

All sequence(s) of the block or just those in the list are not loaded into memory.

[INLINED
<value1>, …
]

Indicates that when writing a datatable, all sequence(s) of the block (or just those in the list) must be
“inlined” into the table (see section 6.1) rather than written in an external file. This option is interesting
when the sequence are very short and that the want to be able read it directly. This option is taken into
account only when a data file is written (section 7) during the reading process the rules expressed in
section 6 are used.

[WEIGHT
<sequence>]

Indicates that this sequence is a vector of weights associated to a another sequence S allowing to
asset an “importance” to each value of S. The lenght of current sequence must be the same than S
otherwise a reading error is raised. If a vector of weights is missing (see section 5.1) we assume that
this vector is uniform and composed of 1.0.

[DERIVATIVE
<Nth>
<sequence>]

Indicates that this sequence is a Nth derivative of a another sequence S. This information can be useful
for some learning tools that are dealing with a value and its derivative at the same time (typically the
case of HARP in IKATS). There are also two constraints: 1) the index (timestamps or marks) and
sampling information must be the same as S and 2) the lenght of the current sequence must be the
same than |S|-Nth. If one of these two conditions is false a reading error is raised.



4.3 Pattern section

This section allows to describe the patterns (i.e a small part of discretized TS or sequence) that have been generated
with other discovery tools (for instance, HARP in IKATS project) or even generated by hand by the user. From a
learning point of view, patterns are very similar to the variables, but the way they are processed are quite different:

1) While the value of a variable is directly provided in the data table, a pattern must be “pre-computed” at the
runtime to retrieve in the new set of sequences if and where this pattern occurs and to compute all the information
needed to fulfill the indicators (see below). Thus, we need to provide all the information allowing this dynamic
exploration.
2) From the point of view of GDF, there are two possibilities for a given pattern: either the variables (i.e generated
from the indicators) corresponding to this patterns already exist in the data table (i.e the value has been already
computed) or the variables are missing but the patterns definition allows to compute these variables when needed.

patterns: [
 {*names: [pat1, pat2, ...],
  *generator: ['HARP' ['version', 1]],
  type : string | [string, [arg1 val1], [arg2, val2] ...]
  *definition: ['[AB].$C[DE]', '[AB][CD]$.[BC]', ...],
  *sequences: ['speed', 'angle_dr'],
  slice:  [start_point, end_point],
  indicators: [exist, count, fst_pos,...],
  breakpoints: [[-5.6, -4, 0, 2], [-2, 5, 12, 19]],
  vocabulary: [[], ['freeze','cold','fresh','mild', 'warm']],
  relevance:  2.0  // the relevance is expressed as a float, default value is 1.
0
  comment:  'other information about these patterns',
  meta:  [['class'] ['id'] ['ignore'] ...]
 }, ...]

name: pattern names. Let’s notice that theses names must correspond (as for the variables and sequences names) to a
readible description of these patterns. In other terms, these names must be as explicit as possible about their meaning. As
usual we can several patterns at the same time when all of these variables share the exactly characteristics but the
definition (i.e the expression describing the pattern).
generator: name of the tool that is able to parse and to execute the patterns with: its version and the (optional) list of
parameters used to learn the patterns each argument of this list is a pair [name, value].
type: the type of a pattern is an optional property helping to interprete the definition part. Indeed a generator can be able
to generated different kinds of patterns. Of course all these information could be embedded in the definition part, but we
make them explicit in order to have a less opaque definition of the patterns and this ease to improve the output of the
generator with new kind of patterns without having to change the coding of the definition part.
definition: this is the “black box” part containing the full description of the patterns using the language used by the
generator. Each pattern is described by a string.
sequences: sequences involved in the patterns; a pattern can correspond to one sequence or to code a correlation
between two or more sequences. Theses sequences must have been declared previously in the profile. This is important
since they allows to know the type, domain and range on which the patterns are generated. There are two possibilities:

When type equals to ‘number’, ‘modular’, ‘timestamp’ or ‘mark’, the values can be discretized and then the properties
breakpoints (and optionally vocabulary allowing to rewrite the pattern in a more readable way) are necessary to the
discretization processes.
When type equals to ‘boolean’, ‘string’, ‘enumerate’, ‘ordered’ or ‘hierarchical’, the values are already discretized (by
definition) and properties breakpoints is useless, the same for vocabulary assuming the initial coding make sense. A
warning must be generated by the reading procedure if they are provided in the description.

In order to illustrate how patterns are coded in GDF, here are some examples of patterns produced with HARP generator. In this system pattern
definition are close (but not identical) to a simplified version of Regex. A pattern can concern one sequence (SP), 2 sequences (DP) or a sequence and
its derivative (MP) ; additional arguments can also exist as a “phase shift” between 2 sequences.

simple pattern on one sequence and vocabulary
names: [pat1],
generator: [‘HARP’ [‘version’, 1]],



type : ‘SP’
definition: [‘[AB].D[EF]]’],
sequences: [‘temperature’],
breakpoints: [[–5.6, –4, 0, 10]],
vocabulary: [[‘freeze’,‘cold’,‘fresh’,‘mild’, ‘warm’]],

pattern on two sequences with a shift
names: [pat1, pat2, …],
generator: [‘HARP’ [‘version’, 1]],
type : ‘SP’
definition: [‘[AB].#C[DE]’, ‘[AB][CD]# .[BC]’, …],
sequences: [‘speed’, ‘angle_dr’],
breakpoints: [[–5.6, –4, 0, 2], [–2, 5, 12, 19]],

sequence with a nominal value (already discretized)
names: [pat1, pat2, …],
generator: [‘HARP’ [‘version’, 1]],
type : ‘SP’
definition: [‘[AB].D[EF]]’, ‘[AB][CD]# .[BC]’, …],
sequences: [‘speed’, ‘angle_dr’],
breakpoints: [[–5.6, –4, 0, 2], [–2, 5, 12, 19]],
vocabulary: [[], [‘freeze’,‘cold’,‘fresh’,‘mild’, ‘warm’]],

patterns: [
 {*names: [pat1, pat2, ...],
  *generator: ['HARP' ['version', 1]],
  type : string | [string, [arg1 val1], [arg2, val2] ...]
  *definition: ['[AB].$C[DE]', '[AB][CD]$.[BC]', ...],
  *sequences: ['speed', 'angle_dr'],
  slice:  [start_point, end_point],
  indicators: [exist, count, fst_pos,...],
  breakpoints: [[-5.6, -4, 0, 2], [-2, 5, 12, 19]],
  vocabulary: [[], ['freeze','cold','fresh','mild', 'warm']],
  relevance:  2.0  // the relevance is expressed as a float, default value is 1.
0
  comment:  'other information about these patterns',
  meta:  [['class'] ['id'] ['ignore'] ...]
 }, ...]

Examples of patterns according to the type parameter



slice: indicates that the patterns concern only a subpart of the sequences. The starting and ending point are expressed in
the units of the first sequence (assuming all the sequences are aligned). If this property is missing the all values of the
sequence are taken into account and explored to find the patterns.
indicators: when HARP generates a pattern it is also able to create a set of new variables about it: for instance the
number of occurrences of the pattern, its average position, the gap between two occurrences, etc. To avoid to have to
declare in the profile part all of these descriptors, we just provide here a list of these “indicators”. For instance, if in a block
containing the patterns [’P1, ’P2] we declare the indicators [‘exist’, ‘min_gap’], this means that two descriptors will exists in
the data table for all the patterns: ‘P1.exist’ ‘P1.min_gap’, ‘P2.exist’ and ‘P2.min_gap’.
There is also a very special “indicators” named “pos” coding for a sequence and not a value. It contains all the
occurrences (i.e. positions) of the current patterns in the observations with two possible format:

index1, index2, … when the pattern have a constant size (default case). When the sequence has more than one index
only the first one is used in this list.
[index1, length1], [index2, length2], … where length is the length of the pattern. This information makes sense when the
size of the pattern is not a constant, for instance with a regex as “B[A]+C” whose length depends on the number of
letter “A” found in the sequence.

Important: to avoid to have a separate file for each observation it seem logical to use the format “row based
representation” (see section 3.2) to store this information !

Here is the list of current indicators for HARP and their types (this list will be possibly extended/modified !). When
property indicators is missing of the pattern definition, column ‘exist’ is automatically generated in the data table.

Indicators domain Semantic
exist boolean indicates if the pattern exist in a sequence.
count integer number of occurrences.
fst_pos index position of the first occurrence.
lst_pos index position of the last occurrence.
avg_pos index average position.
min_gap index smaller interval between two consecutive occurrences.
max_gap index larger interval between two consecutive occurrences.
avg_gap index average interval between two consecutive occurrences.
pos sequence of positions list of the occurrences of the patterns.

breakpoint: List of breakpoints associated to each sequence allowing to discretized the numerical values (not needed
when 1) a sequence is made of nominal values and/or 2) the generator is not based on a discretization of the values).
There are 2 important things to notice. Firstly, in GDF each set of patterns has its own list of breakpoints, meaning that for
a same seqeunces several discretizations are possible. Secondly, the first and last values of a list of interval in the
breakpoints are “open” and only bounded by the range of the sequence. For instance the list of breakpoints [–2, 0, 2]:

means : there are four intervals [min_range, –2[; [–2, 0[; [0, 2[; [2, max_range,]
doesn’t mean : there are two intervals [–2, 0[ ; [0, 2]

vocabulary is used to express the discretized values in a more readable format using all possibilities of Unicode. The
number of items in the vocabulary must equal to the number of breakpoints plus one since the breakpoints are correspond
to the treshold and the vocabulary to the intervals! By default, if this field is missing the generator uses its default
representation (e.g. alphabet letters {A, B, C, …} for HARP), or the real values in the case of discrete values (ordered,
string, …).
relevance: semantical relevance (i.e. weigth) associated to the current pattern. This value is inherited by all the indicators
derivate from the pattern. Default value for relevance is 1.0 (floating number).
comment: description of the role of the pattern or the « long name » that can be use in the interface to comment a result.
meta: List of meta information indicating the role of the patterns in the learning task. Generally when the indicator “pos” is
used (see above) for a given pattern P1, it would be interesting to add automatical the meta information [‘SKIP’, ‘P1_pos’]
to indicate to the learning tool that this information is (in most of the cases) not to used during the learning step.



Keyword Semantic of the meta-information
[IGNORE,
<value1>,
… ]

All pattern(s) of the block or just those in the list are not explicitly used to learn. Nevertheless, they are
loaded into memory. Let’s notice this keyword is equivalent to “META” in Orange format.

[SKIP,
<value1>,
… ]

All pattern(s) of the block or just those in the list are not loaded into memory.

5. Description of the data table

The data table contains a set of pairs feature/value allowing to describe the examples. In GDF we accept two
different formats for this data table: GDF table and DAF table (see section 2.2). Both of them are based on a classical
CSV coding allowing to use the classical “delimiters” (e.g: comma, tab, …).

In both table formats the header line of the file contains the name of the columns to improve readability of the table.
Moreover, in this way, the order of the features/column can be different from the declaration order in the profile but of
course feature names must be identical and an error must be raised by the parser if not.

5.1 GDF table

This format, which is the default data format for GDF, is classicaly used by most the machine learning tool to
describe the dataset. In this kind of table:

each line is an example/observation
each column is the value of a feature (variable/sequence/pattern).

In the case of the sequences, this value is a “pointer” on the file containing the set of values in the case of a TS or
sequence (see section 6 for more details). When the format is used along with a database (as in IKATS project for
instance), this pointer is an identifier to the corresponding item in the database.

5.2 DAF table

As we saw in section 2.2 another format is widely used in Data Analysis in which all data, including sequences are
stored in the same file. In this kind of table:

each example/observation are stored using several lines, the number of lines for each observation being equal to the
length of its longuest sequence.
as in GDF format each column contains the values of a feature (variable/sequence/pattern). When the features is a variable
or a pattern the first ligne of the example contains its value, the other lines can either repeat the same value or being just
empty. If a sequence is shorter than the other the lines after the end of this sequence are empty for the corresponding
column.

5.3 The case of special values (missing, unrelevant, …)

Independently from the way the tables are stored (GDF or DAF) there are often some values in the dataset that are
either:

missing or too noisy (named unknown values, generally coded « ? ») or
without any meaning (named don’t care values, generally coded « * »), in this case it means that the corresponding value is
unrelevant for the current observation.

These “special values” can occur in any kind of variable (standard values or part of sequences) and GDF must be
able to represent them in the files and within memory. A good example of how these values can “appear” is given by
the patterns part of the profile. For instance, let’s imagine that a pattern “A[B]BC” is relevant for a class C1 but that it
is not (or rarely) occurring in the other classes. This means that the values of the position/interval based indicators of

https://en.wikipedia.org/wiki/Comma-separated_values


this pattern (e.g. “fst_pos” or “min_gap”) can be “undefined”, for the observations not belonging to class C1. By
coding the information with any other values than don’t care (for instance fst_pos=0, min_gap=–1) we would just
transmit false information to the learning tools and thus could leading them to take a bad decision.

From the learning point of view, the way to deal with them is very dependent of the learning algorithm (but they don’t
concern the reading process). There are some classical strategies, for instance:

Unknown values: to approximate the value by the average value in the database or by the average value of the class to
which belong the example in supervised learning, or by the average value of the current node in a decision tree method.
Don’t care values: to “neutralize” the value by considering all the possible values (but this method is only possible when
the feature is a nominal type) or to consider that the corresponding pair observation/value doesn’t provide any information.

6. Links to the external Sequences

As we saw in the previous section, when the file describing data table use the GDF format, values corresponding to
sequences are generally (see exception herunder) “pointers”, namely a directory and a filename, to the external CSV
files containing these data. As we saw (details in section 2.2), there are two “classical” ways to describe the TS or
sequences, to summarize:

Row format: each line describes the TS/sequence associated to a given feature, each file describing one or several
observations.
Column format: each column describes the sequence associated to one or several features (thus, number of lines of a file
= number of timestamps of the current observation). In this format, when there are several columns, the first line is an
header indicating the name of the feature associated to each column.

6.1 The specific case of inlined sequences

Sometime a sequence can be very short containing just 2, 3 items. In this case it is interesting to allows the
possibility to “inline” this sequence directly in the data table thus avoiding to create some files. This feature is only
possible when the sequence use an implicit index (integer). The format for this data is a string beginning with the two
characters “@[”. For instance: “@[item 1, item 2]”, in such case case the different values are separated with a
comma.

6.2 Automatic file format detection

As the files describing sequences can come from different “sources” and to avoid the user to have to do a lot of
preprocessing, it would be interesting to implement an intelligent reading process that would be able to
automatically “detect” the different kind of formats (row/column, with/without header, etc) and to process the files
containing sequences in a relevant way. We are going to consider all classical situations and look at the way to deal
with them.

First, in row format, for a given feature (i.e. sequence), a file often described more than one observation, meaning
that in the data table, the name of this file will be repeated several times in a same column (feature). That is a
problem since we need to assume that the line number describing an example « n » is coherent in both files (i.e. data
table and external file). However, as soon as the user slightly modify the data table (for instance by sorting
observations), this “order based” link will be silently broken. Thus, to have a more robust way to associated the right
sequence to the right observation it is important to create an explicit link between the two pieces of information. We
propose two different methods:

1. to associate a line number to the name of each file to identify the right sequence. This method has the advantage to need
no extra-information.

2. to associate a name (i.e string) to the of each file , assuming that in this file each line is indexed by a name placed on the
first column. This second method is more robust.



Second, in column format, things are simpler if we assume that the first line always contains an header (i.e the list of
feature(s)) as soon as there is more than one column. In the later case we could accept that the header is present or
missing.

The next table summarize all possible cases (according to the content of the file in terms of number of lines, columns
and presence of a header) when one read an external sequence. It describe how the file “X” must be described in the
data table and the action to do with the possible failures. Let’s notice that the reading procedure should be able to
remove the empty lines or empty columns in the files to be more robust and to avoid raising useless errors.

#Row,
#Col,

Header
External file content Data table

syntax Action …

1, N, no one sequence using row
format “X” Read the sequence of length N

N, 1, no
one sequence using

column format without
any header

“X” Read the sequence of length N

N,
1, yes

one sequence using
column format with an

header
“X” Read the sequence of length N–1 and verify that the header

name corresponds to the current column of the data table

N, P, no N sequences with row
format

“X:<nnn>”
or “X:

<name>”

Read the sequence <nnn> or <name>, an error is raised if it
doesn’t exist

N,
P, yes

N sequences with column
format “X”

Read the sequence in the column name corresponding to
current column of the data table, an error is raised if it doesn’t

exist

Finally, once the file format has been determined for a given sequence, the reader process interprets the sequence
according to index property (see section 4.2) indicating the way to associate properly the index(es) with the values of
the sequence. An error is raised when:

A sequence use an explicit index and that the length of the two sequences (index and values) are not equal.
A feature corresponding to the same index appears into several files and that the different occurrencies are different.

Section 9 provides an exemple of some of the different ways to represent the sequences and their associated
indexes.

7. Reading and exporting data format

To ease diffusion of GDF, it is very important to provide users with a “translation” tool able to read and write several
classical data format to simplify the convertion into the format describe in this document. The most interesting
targets are:

UCR format (TS data bases)
Orange format
Weka (ARFF) format
Amazon ML format
DAF representation (see section 2.2) is widely used in Data Analysis. In this format all data are stored in one file: columns
being the features and examples being organize into block of N consecutive lines. This format leads to some odd
characteristics complicating a little bit the parsing. For instance as all features have the same number of lines, this leads to
have some cells with a repeated or null value in the case of classical variables.
A spreadsheet based representation to help edition of the profile (see annex D). Such format is very interesting since in
many scientifical or industrial domain, users are storing/modifying their data using this format (even if the adequacy of this
approach is very questionable).

http://timeseriesclassification.com/dataset.php
https://docs.orange.biolab.si/3/visual-programming/loading-your-data/
http://www.cs.waikato.ac.nz/ml/weka/arff.html
https://docs.aws.amazon.com/machine-learning/latest/dg/creating-and-using-datasources.html


Of course when exporting GDF file into another format, some features are impossible to express. Translation process
must be able to keep as much information as possible, for instance missing types will be translated into their
closest equivalent. Another problem is that in some data format there are “implicit” information that we want to
becomes explicit (i.e described as a feature) in our format. For instance, if observations are named in the source file
but that this name is not associated to a variable we need to generate a specific variable with two contraints to
respect:

we need to avoid any naming conflict with the other features (one naming space)
this features must be easily identified when we export to another format to avoid to generate a feature that doesn’t
previously exist (e.g when we import then export to GDF a data format, the exported file must be semantically identical to
the initial one !)

So we use the following convention: features that has been generated due to the conversion process begin with the
character “@”. For instance “@ID” is a name automatically generated, “@class” the feature containing the class of
the observation, etc.

Canonical data format for GDF

As we saw in section 6 the sequences stored in different files can have different formats (row/column, with/without
header, etc). If the reader process is able to deal with all of them, it is also important to be able, when we export a
learning set to GDF to “normalize” the representation of the sequences and to provide the most interesting structure
according to the number of observations/features. Thus, two main options must be implemented (corresponding 4
possibilities):

selection between observations based or features based organization of the files.
Selection between mono or multi-sequences files.

Here is a short description of files organization for each case:

- Observations based Features based

One
sequence/file

There is only one folder per observation,
each folder containing as many files than the
number of features (excluding indexes); we
use column format to store the values and
the n indexes sequences (generally n=1) are
provided inside the same file leading to a n-
columns representation (with n–1 indexes).

There is one folder per feature (excluding indexes),
each folder contains as many files than the number
of observations, we use column format to store the
values and the indexes are provided inside the files
leading to a n-columns representation (with n–1
indexes).

Many
sequences/file

The sequences associated to an
observation are described into one or
several files according to the number of
different index sequences that exist
(timestamp or mark). Thus, each file
contains values of one index and as many
columns as the number of features using
this index.

 There is one file per variables, each file contains as
many lines than the number of observations. These
observations are named using their current ID (i.e.
and thus we use of “X:<name>” format in data table)
and explicit indexes are stored as standard variables
in other files. This representation is mainly
interesting when index are implicit (position based).

8. Merging data files

When we describe a Learning Set, it is sometime useful (or even necessary) to split it into several parts, that typically
the case when a tool as HARP “complete” an initial LS by adding some patterns. Thus the LS readers must be able
to deal with these situations. In practice we have two cases:

The LS files shared the same profile (i.e. sames features) and the collection of data are just corresponding to different set
of examples. In this case, the resulting data set is just the a concatenation of the data part (i.e merging lines in the data
table).



The examples are described using several profile, each profile corresponding to a subset of the descriptors. In such case
the different definition of descriptors can be “concatenated” (i.e merging columns in the data table) but with some cautions
to be able to export a correct format:

Descriptors of two different profiles must have different names to avoid naing conflict.
The resulting header is the header of the first profile (assuming that the list of LS is ordered) and the other part of the
profiles are merged together.

9. Example of GDF representation

Here we provide a small example illustrating some of the possibilities of sequence descriptions. The profile (see
section 4) contains the following declarations:

OBS is the name of the observation
V1 is an ordered variable with range [a, b, c, d]
T1 and T2 are correspond to explicit timestamps
S1, S2, S3 are sequences of integer, S1 is indexed by T1 and S2, S3 by T2
P1 is a pattern defined as “A[BC]” with variants count and min_gap

This will correspond to the following JSON code:

{
  "header": {
    "doctype": ["GDF", 0.32],
    "date": "18-02-14 22:10",
    "dataset": "Data example",
    "source": "IKATS project",
    "authors": "G. Bisson",
    "learningSet": []
  },
  "dictionary": {
    "variables": [
      {"name": "OBS",
        "type": "string",
        "comment": "name of the observations",
        "meta": [["id"]]
      },
      {"name": "v1",
        "type": "ordered",
        "domain": "string",
        "range": ["a", "b", "c", "d"]
      }
    ],
    "sequences": [
      {"name": ["T1", "T2"],
        "type": "timestamp",
        "domain": "integer",
        "units": "year",
        "sampling": "uneven"
      },
      {"name": "S1",
        "type": "number",
        "domain": "integer",
        "range": [0, 100],
        "units": "m",
        "index": "T1"
      },
      {"name": ["S2", "S3"],
        "type": "number",
        "domain": "float",



        "precision": 2,
        "units": "cm",
        "index": "T2"
      }
    ],
    "patterns": [
      { "name": "S[ML]",
        "generator": ["HARP", ["version", 1]],
        "definition": "S[ML]",
        "sequences": "S1",
        "indicators": [ "count", "min_gap" ],
        "breakpoints": [10, 25, 65],
        "vocabulary": ["S", "M", "L"]
      }
    ]
  }
}

Here is an example of the data table:

OBS V1 S[ML]_count S[ML]_min_gap T1 T2 S1 S2 S3

obs1 b 1 0 T1-
ob1.csv data1.csv S1.csv:00 data1.csv data1.csv

obs2 c 4 3 T1-
ob2.csv data2.csv S1.csv:01 data2.csv data2.csv

obs3 c 2 6 T1-
ob3.csv data3.csv S1.csv:02 data3.csv data3.csv

obs4 a 2 1 T1-
ob4.csv data4.csv S1.csv:03 data4.csv data4.csv

As we can see features T1 and S1 are stored into two separate using a row format, while T2, S2 and S3 are stored in
the same files using the column format. Here is an example of the content of this files:

For the four files corresponding to T1:

File Values
T1-ob1.csv 23624, 23627, 23700, 23745, 23802
T1-ob2.csv 4567, 4678, 5000, 5005,
T1-ob3.csv 45890, 45895, 46700, 48904, 48950, 48960
T1-ob4.csv 0, 8, 14, 25, 102, 206, 424, 425

For sequence S1 there is only one file using row format. The number of values on each line must be coherent with
content of the files describing the sequence T1.

S1.csv file
45, 67, 12, 0, 14
100, 98, 94, 80
56, 58, 78, 96, 100, 88
67, 56, 45, 54, 78, 100, 98, 86

For data1.csv using the column format. Files data2, data3 and data4 have a similar structure.



Data1.csv
T2 S2 S3
678 45.40 –12.64
702 56.67 –10.00
804 57.43 –9.24
856 65.08 –11.56



Annex A : Composite types.

In section 4.1 we described the GDF basic types. This list could be extended, for instance to include complex
numbers, probabilities, … However, in many domains some values are composed of several basic arguments. For
instance, to store a geographical position we can use 2D or 3D coordinates (corresponding to 2 and 3-uplets) ; we
need the same thing to store some statistical information (mean and standard deviation, intervals, …); etc. Of course,
each value could be stored independently in several variables of the data table but by doing that we lose the
meaning of the data and a program that will analyze them have to “rebuilt” the complete information.

Thus the idea would be to add a new block in the dictionary allowing to declare composite types that is to say a type
of data which is a n-uplet composed of the GDF basic types. Here, we make no assumption on the way the ML tool
will use these data and it will be probably interesting to introduce some semantical information to express how these
data must be processed (for instance: providing a similary function).

Here is an example of declaration in the Dictionnary block. In the other part (variable, etc) the user will just use the
new type name without any possibility to specialized the definition.

type: [
   {name: "coordinate",   // new composite type
    type: ["modular", "modular", "number"],
    domain: ["float", "float", "float"]
    range: [[-180.0, +180.0], [-180.0, +180.0], []],
    units: ["degree", "degree", "m"]
    comment: "Longitude, latitude and altitude"
    },
    { ... }
    ]
variables: [
      {name: "object-pos",
       type: "coordinate",  // we use the composite type as previously defined
       comment: "X, Y, Z observations",
    



Annex B : Relational information.

The tabular representation widely used in ML (see section 2.1) is simple but it offers no way to easily express
relational information (i.e: datasets in which parts of the observations contain some references to one or several
other observations). Here the idea is to propose a simple extension of GDF to deal with this problem.

Benefit: allow to represent relational information in a dataset
Basic idea: the profile can contain several dictionaries with some link between them

Each dictionary has a name (default name is “data”)
Each dictionary has its own table
A dictionnary can be seen as a new domain of the type “relation”.
The type of a variable or a sequence could be the name of one (or several) dictionary. In this case that means that we
have a pointer on an element (observation) of another table. In the next example, a person can have pointers on a
company table, a town table and even on his own table.

Example of declaration of a relational structure

dictionary:[
   person:{    // name of the file containing the table
   variables:[
    { name: "firstname",
      type: "string"},
    { name: "employer",
      type: "relation", // relational field 
      domain: "company"}, // value is the ID on an observation in table "company.csv"
    { name: "adress", 
      type: "relation", // relational field 
      domain: "town"} // value is the ID on an observation in table "town.csv"
      
    ]  
   sequences:[ 
    { name: "children"  
      type: "relation", // relational field 
      domain: "person"} // values of this sequence are ID of observations in "person.
csv"      "
    ]  
   patterns: [ ... ]  
 },
   company {...},   // dictionnary of company
   town {...},    // dictionnary of town
   ]



Annex C : Representation of hierarchical clustering results.

The output of hierarchical clustering is a binary tree whose nodes are corresponding to a cluster. Each cluster
gathering either two others clusters, or one cluster and one observation, or two observations. Thus the output
contain some relationnal information. Here, the idea is allow GDF to natively represent such kind of relational
structure by using two dictionaries (see Annexe B):

observations: the initial observations used to built the hierarchy
clusters: the hierarchy, each nodes being define with either an observation or another cluster.

Example of declaration of such dataset.

dictionary:[
   instances:{    // name of the file containing the instances
   variables:[
    { name: "firstname",
      type: "string"},
    { name: "employer",
      type: "relation", 
      domain: "company"},
    ...
    ],
 }
   clusters: {    // name of the file containing the clusters
   variables:[ 
    { name: "left-node"  
      type: "relation"
      domain: ["instances", "clusters"]}, // left node: ID of an instance or a cluster
    { name: "right-node"  
      type: "relation"
      domain: ["instances", "clusters"]} // right node: ID of an instance or a cluster
    ...
    ]  
 },
   company {...},
   ]



Annex D : Flat representation of the profile.

Using JSON format (or even a more simple one as YAML) it is clearly quite impossible to write the “profile” of a
dataset with a text editor even if it is doted with a JSON mode. Thus we need to provide to the user a more simpler
way to write it. There are two possibilities:

the user can write a very first version using simple format (orange, weka) and then import the file. The main drawback of
this approach being that most of GDF features will be ignored and a lot of work is required to complete the description of
the data.
providing another more user friendly external format for GDF. In practice, GDF format can be easily turn into a tabular
format that can be edited with a very classical spreadsheet tool. The advantages of this approach are multiple:
spreadsheet is a widespread tool, it is well-know by ton of users and, all in all, it is well-adapted to write semi-structured
data.

The target format to use for this file can be either :

xlsx: native format of Microsoft Excel. Some libraries exists (e.g. pyexcel-xls) in python to read/write this format.
odf: native format of Apache Libre Office. Here too libraries exists (e.g. pyexcel-ezodf) in python to read/write this format.

The structure of the flat external format is this one:

The profile file is composed of several sheets:
a first sheet describing the header of the profile
a sheet per dictionnary and category of data among: variables, sequences and patterns. For instance, if the dictionary
is named “data” we can have the three following sheets. Of course a sheet can de removed if there is no feature
belonging to this category.

data.var : to define the variables (one line per variables)
data.seq : to define the sequences (one line per sequences)
data.pat : to define the patterns (one line per patterns)

optionally the file could also contains the table associated to each dictionary (for instance data.csv), in this way profile
definition and main data are at the same place. Here there is two cases (see section 5):

GDF table: the files containing the sequence values must not appear here.
DAF table: all data (including sequences) are stored in the table.

Furthermore with this organization it would be relativelly easy to provide some “template” containing macros allowing
to simplify creation of the profile and to avoid some basic errors (wrong type name, …)

https://pypi.python.org/pypi/pyexcel-xls
https://pypi.python.org/pypi/pyexcel-ezodf


Annex E : Change log.

Changes done with respect to version 0.42

Description Sections
concerned

Update and complete introduction part and the State of the art of Time Series representations. 1, 2.2, 7
Introduce a new type “date” in order to avoid confusion with the type “timestamp” whose use is reserved
for sequences only. 4.1

The type “timestamp” now accept to have some range restriction. 4.1
The property “inlined” for the sequences has been transformed into a meta information since it doesn’t
concern the semantic of the sequences. 4.2

The property “weighted” for the sequences has been transformed into a meta information since it mainly
concern the learning process. 4.2

A new meta information “derivative” for the sequences has been added. It allows to indicate that a
sequence is the n-th derivative of another one. This information mainly concern the learning process. 4.2

Improve the description of the need to handle correctly “unknown” and “don’t care” values in GDF
format. 5.3

Modification to deal with the multi-lines data format (DAF) often used in Data analysis. 5, 7
Modification in section 6 and 7 in order to solve some ambiguities in the descriptions. 6, 7
Correction of many typos as usual.

Changes done with respect to version 0.40

Description Sections
concerned

A new meta-keyword prototype has been added to help coding of the clustering results. 4.1
The definition of variables and sequences has been modified. Now we have 3 properties: type, domain
and range instead of 2. Domain expresses the way the type in represented and range the possible values
or a domain restriction.

4.1, 4.2

The meta-keyword weight has been renamed strength. 4.1
The meta-keyword relevance has been turned into a property in the dictionnary since it is more related to
the semantic of the feature (is this information important or not) than just a meta-information.

4.1, 4.2,
4.3

More precisions have been added concerning the meta-data for the sequences and the patterns. 4.2, 4.3
The property weight has been added to the sequences to indicate when a sequence has an associated
vector of weights. 4.2

The property inlined has been added to the sequence allowing to directly store a sequence within a data
table. 4.2

Content of the annexes has been extended to provide further details about the possible improvements. A, B, C, D
Correction of many typos as usual.



Changes done with respect to version 0.32

Description Sections
concerned

Section 1 has been rewritten in order to provide a better outlook of the goals and interests of this work. 1
New section 2.3 discussing how to generalize the time series representation to deal with any kind of
sequences. 2.3

Property “LSformatVersion” has been replaced by a more general “doctype” in the header. 4
Property “Authors” has been added to the header. 4
Major changes has been done in the list of types handled by the representation language. These
modifications have two goal: first becoming closer to the classical types used in data analysis and
second, to extend and generalize the representational possibilities.

4.1, 4.2,
4.3

Notion of sequence has been generalized and now values can be indexed by any kind of ordered values
and not just timestamps. 4.2

Correction of the definition of “vocabulary” in patterns description section which was not coherent with
the way breakpoints are defined. 4.3

Property “variants” in patterns description has been renamed “indicators” which is more appropriate. 4.3
Property “length” in patterns description has been removed, this information is very dependant of the
description language used to represent the patterns. If a tool is able to interpret this language it is also
able to compute the size.

4.3

Several annexes has been added to describe some possible improvements to GDF. A, …
Correction of many typos as usual.


