

L'HYDROGÈNE COMME **VECTEUR DE LA MOBILITÉ À LA RÉUNION:**

QUELS IMPACTS ET ALTERNATIVES POSSIBLES?

Agnès FRANÇOIS

INTRODUCTION

- → Membre du projet HyLES
- → Doctorante FEMTO-ST, 18 mois effectués à Belfort et 18 mois à La Réunion
- → Travail au sein du laboratoire Energy-Lab

Objectifs de ma thèse :

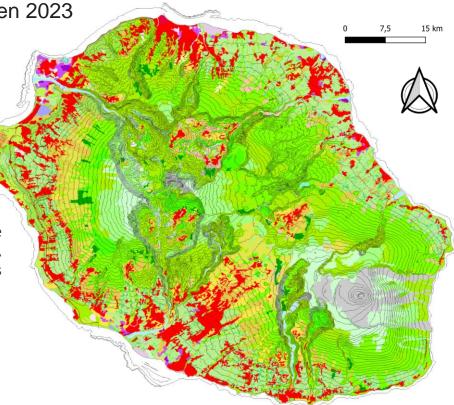
- Modélisation et optimisation d'un réseau électrique insulaire à moyen et long terme
- Intégration de l'hydrogène pour la mobilité et le stockage réseau
- Application au cas de La Réunion

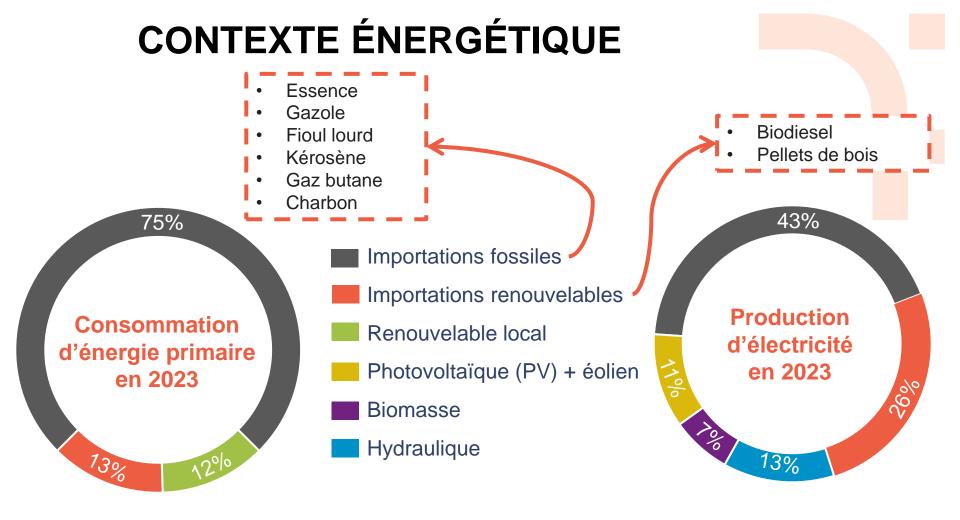
INTRODUCTION

- I. Contexte énergétique à La Réunion
- II. Méthodologie
- III. Cas des autocars à La Réunion
- IV. Cas d'une ligne ferroviaire à La Réunion
- V. Cas des secteurs maritime et aérien
- VI. Conclusion
- VII. Perspectives

CONTEXTE ÉNERGÉTIQUE

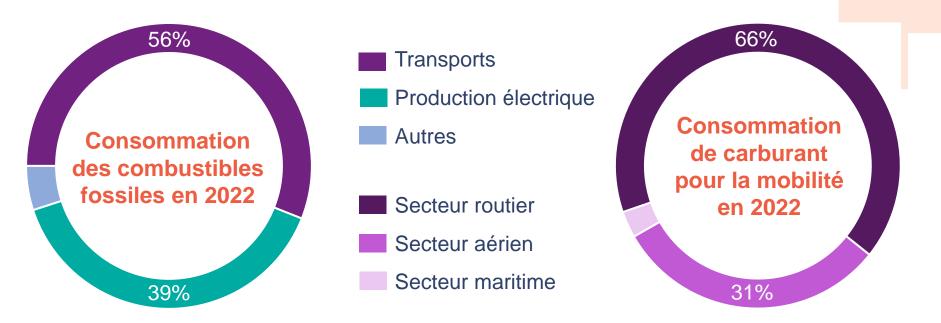
- La Réunion, DROM, Océan Indien
- ZNI de 2 500 km²
- Près de 900 000 habitants


• Taux de dépendance énergétique : 88,6 % en 2023


• Objectif d'autonomie énergétique : 2030^[1]

Carte de La Réunion, représentant le relief (lignes de niveau), l'urbanisation (rouge), les surfaces agricoles (orange) et les forêts (vert).

[1] LOI n° 2015-992 du 17 août 2015 relative à la transition énergétique pour la croissance verte - Article 1, 2015. Ajout article L. 100-4 Code de l'énergie.


Consommation énergie primaire : 17 836 GWh

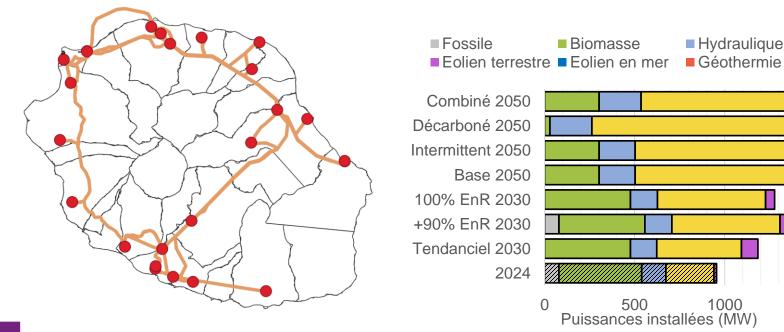
Consommation électrique : 2 728 GWh

CONTEXTE ÉNERGÉTIQUE

Sur le secteur de la mobilité en particulier :

- → Le secteur des transports consomme 2/3 de l'énergie finale
- → Consommation de 693 ktep en 2022
- → + de 410 000 voitures particulières en 2022 (pour ~860 000 habitants)

SOMMAIRE


- I. Contexte énergétique à La Réunion
- II. Méthodologie
- III. Cas des autocars à La Réunion
- IV. Cas d'une ligne ferroviaire à La Réunion
- V. Cas des secteurs maritime et aérien
- VI. Conclusion
- VII. Perspectives

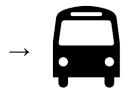
MÉTHODOLOGIE

- Production d'hydrogène par électrolyse de l'eau avec une électricité peu carbonée
 - → Modélisation du réseau électrique de La Réunion
 - → Projections de scénarios électriques à moyen et long terme

1000

Hydraulique

PV


1500

■ ETM

2000

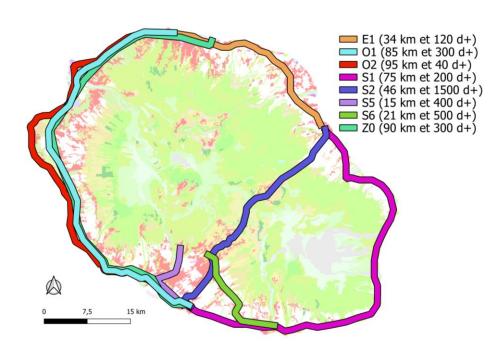
MÉTHODOLOGIE

Étude de l'intégration de l'hydrogène sur différentes applications

- → Estimation de la consommation des applications
- → Simulation d'une production d'hydrogène sur le réseau électrique
- Résultats attendus
 - → Dimensionnement des technologies hydrogène
 - → Renforcement nécessaire du réseau électrique
 - → Estimation d'impacts économiques et/ou environnementaux

SOMMAIRE

- I. Contexte énergétique à La Réunion
- II. Méthodologie
- III. Cas des autocars à La Réunion
- IV. Cas d'une ligne ferroviaire à La Réunion
- V. Cas des secteurs maritime et aérien
- VI. Conclusion
- VII. Perspectives



Objectifs:

- → Comparer une solution électrique à batterie à une solution hydrogène
- → Estimer les besoins énergétiques, les coûts et les impacts environnementaux de chaque solution

Cas d'étude:

- → 94 autocars pour 17 lignes, 8 millions de kilomètres parcourus en 2017
- → Jusqu'à 400 km par véhicule par jour
- → 1 ligne avec 1 500 mètres de dénivelé positif
- → 1 ligne avec 80 km sans arrêts

Carte des principales lignes du réseau régional d'autocars.

Objectifs:

- → Comparer une solution électrique à batterie à une solution hydrogène
- → Estimer les besoins énergétiques, les coûts et les impacts environnementaux de chaque solution

Comparaison de différentes solutions :

- → Rétrofit moteur électrique
 + batterie
- → Nouvel autocar moteur électrique
 + batterie
- → Rétrofit moteur électrique + PAC
 + stockage H₂
- → Nouvel autocar moteur électrique
 + PAC + stockage H₂

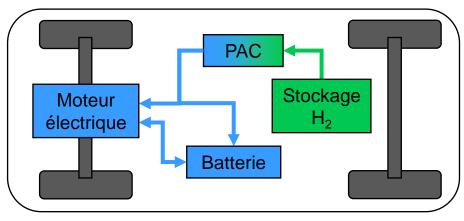
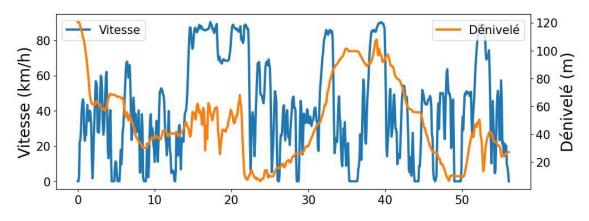
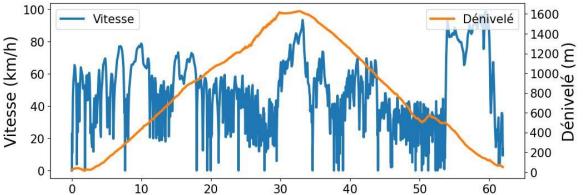



Schéma des technologies constituant un véhicule à PAC.



1ère étape : Estimation de la consommation énergétique

Ligne qui longe le littoral:

- → Conso électrique : 152,1 kWh/100km
- → Conso hydrogène : 9,7 kgH₂/100km

Ligne qui traverse l'île:

- → Conso électrique : 206,7 kWh/100km
- → Conso hydrogène : 13,2 kgH₂/100km

Profil de vitesse et de dénivelé de deux lignes du réseau.

<u>2^{ème} étape</u> : Estimation de l'autonomie des véhicules

	<u>Neuf</u>	<u>Rétrofit</u>
Ligne qui longe le littoral :		
→ Conso électrique : 152,1 kWh/100km	210 km	110 km
→ Conso hydrogène : 9,7 kgH2/100km	750 km	370 km
<u>Ligne qui traverse l'île</u> :		
→ Conso électrique : 206,7 kWh/100km	180 km	80 km
→ Conso hydrogène : 13,2 kgH2/100km	550 km	270 km

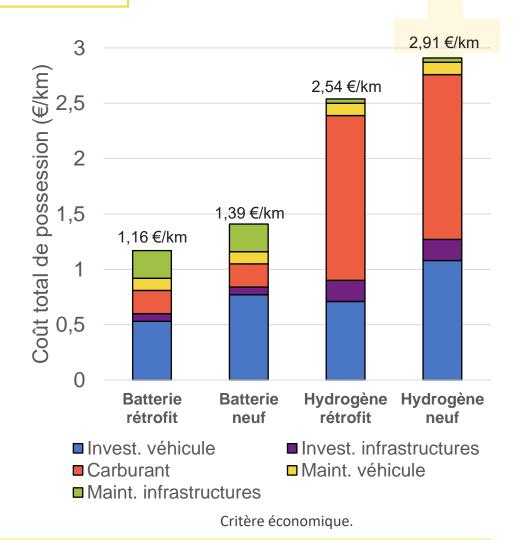

3ème étape : Dimensionnement des infrastructures

<u>Ligne qui longe le littoral</u>:

- → Conso électrique : 152,1 kWh/100km
- → Conso hydrogène : 9,7 kgH2/100km

<u>Ligne qui traverse l'île</u>:

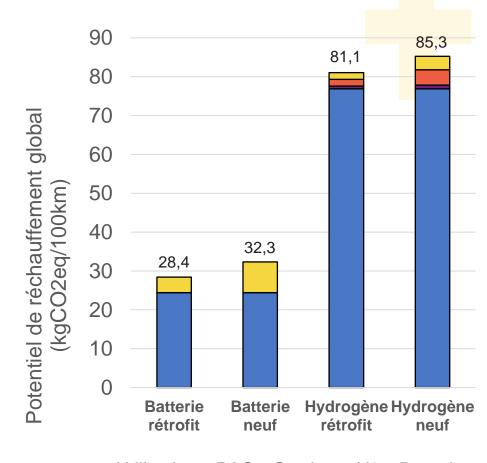
- → Conso électrique : 206,7 kWh/100km
- → Conso hydrogène : 13,2 kgH2/100km


- 2 stations de ravitaillement
- Électrolyseur 3 MW
- Stockage H₂ 2,2 tH₂
- ~ 50 GWh annuels
- ~ 16 GWh annuels

<u>4^{ème} étape</u> : Comparaison sur différents critères

Critère comparé : coût total de possession

- Coûts d'investissement, du carburant, de maintenance
- Nombre de kilomètres parcourus
- Critère en €/km



<u>4ème étape</u> : Comparaison sur différents critères

Critère comparé : potentiel de réchauffement global

- PAC, batteries et stockages H₂ embarqués
- Extraction des matières premières, production, transport, recyclage, fin de vie
- Utilisation des véhicules (impact mix électrique)
- Critère en kgCO₂eq/100km

■ Utilisation ■ PAC ■ Stockage H2 ■ Batterie

Critère environnemental.

En conclusion:

	Autonomie	Temps de recharge	Impact économique	Impact environneme <mark>ntal</mark>
Batterie rétrofit	Faible	Lent ou pic de puissance important	Faible	Faible
Batterie neuf	Moyen faible	Lent ou pic de puissance important	Faible	Faible
Hydrogène rétrofit	Moyen élevé	Rapide	Élevé	Élevé
Hydrogène neuf	Élevé	Rapide	Élevé	Élevé

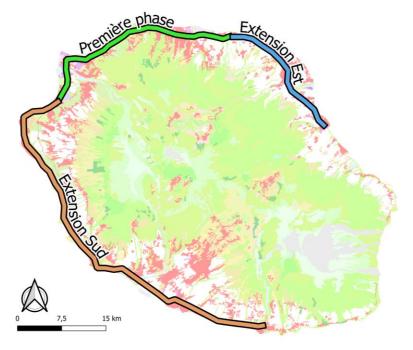
- → Véhicule PAC : meilleure autonomie et temps de recharge (dans le cas présent)
- → Véhicule batterie : avantage économique et environnemental
- \rightarrow <u>Solutions</u>: optimiser les lignes, mix des technologies

SOMMAIRE

- I. Contexte énergétique à La Réunion
- II. Méthodologie
- III. Cas des autocars à La Réunion
- IV. Cas d'une ligne ferroviaire à La Réunion
- V. Cas des secteurs maritime et aérien
- VI. Conclusion
- VII. Perspectives

CAS LIGNE FERROVIAIRE

Objectifs:


- → Comparer une solution électrique à batterie à une solution hydrogène
- → Estimer les besoins énergétiques, les coûts et les impacts environnementaux de chaque solution

Cas d'étude:

- → Une ligne de 146 km
- → 11 000 km parcourus par jours

Comparaison de différentes solutions :

- → Électrique relié
- → PAC + stockage H₂ + batterie

Tracé du projet de tram-train abandonné en 2010.

CAS LIGNE FERROVIAIRE

Objectifs:

- → Comparer une solution électrique à batterie à une solution hydrogène
- → Estimer les besoins énergétiques, les coûts et les impacts environnementaux de chaque solution

	Conso. moyenne	Autonomie	Conso. annuelle	Impact économique	Impact environnemental
Électrique relié	500 kWh/100km	-			
Hydrogène	20 kgH ₂ /100km				

- → Fortes incertitudes sur les coûts locaux
- → Évolution future des trains électriques à batterie ?

SOMMAIRE

- I. Contexte énergétique à La Réunion
- II. Méthodologie
- III. Cas des autocars à La Réunion
- IV. Cas d'une ligne ferroviaire à La Réunion
- V. Cas des secteurs maritime et aérien
- VI. Conclusion
- VII. Perspectives

CAS SECTEURS MARITIME/AÉRIEN

Objectifs:

- → Estimer les besoins énergétiques futurs des 2 secteurs
- → Évaluer les impacts sur le réseau électrique

Hypothèses:

Secteur maritime	Secteur aérien	
→ Consommation -25%	→ Consommation stable	
→ E-ammoniac (hydrogène + diazote)	→ E-kérosène (hydrogène + CO ₂)	
	→ Capture de CO ₂ dans l'air	
→ Consommation énergétique : 1,82 MWhé/MWh	→ Consommation énergétique : 2,75 MWhé/MWh	
 → Consommation différenciée selon le mois de l'année → Consommation identique chaque heure de chaque mois 		

CAS SECTEUR MARITIME/AÉRIEN

Secteur maritime:

- → + 240 GWhé par an
- → Demande pouvant être satisfaite localement
- → 30 à 40 MW d'électrolyseur, 20 à 40 tonnes de stockage hydrogène

Secteur aérien:

- \rightarrow + 6 840 GWhé par an
- → Demande ne pouvant pas être satisfaite localement
- → Plusieurs solutions possibles :
 - a. Ajout de nouveaux moyens de production d'électricité
 - b. Réduction de la consommation du secteur aérien

CAS SECTEUR MARITIME/AÉRIEN

Secteur aérien :

- → + 6 840 GWhé par an
- → Demande **ne** pouvant **pas** être satisfaite localement
- → Plusieurs solutions possibles :
 - a. Ajout de nouveaux moyens de production d'électricité
 - b. Réduction de la consommation du secteur aérien
- Exemple de l'optimisation d'un parc éolien offshore :
- → 4,3 GW d'éolien offshore, 20 % des lignes du réseau à renforcer
- → 800 MW d'électrolyseur et 4,1 ktH2 stockage H2
- Estimation de la quantité d'e-kérosène pouvant être produite localement :
- → 5 ktep d'e-kérosène, soit -97% par rapport à 2019
- → 84 MW d'électrolyseur et 10 tH2 stockage H2

SOMMAIRE

- I. Contexte énergétique à La Réunion
- II. Méthodologie
- III. Cas des autocars à La Réunion
- IV. Cas d'une ligne ferroviaire à La Réunion
- V. Cas des secteurs maritime et aérien
- VI. Conclusion
- VII. Perspectives

CONCLUSION

	Autocars	Train	Maritime	Aérien
Consommation annuelle électricité	50 GWh	44 GWh	240 GWh	6 840 GWh
Consommation annuelle eau	10 600 m ³	9 400 m ³	65 000 m ³	1 400 000 m ³
Taille électrolyseur	6 MW	5,4 MW	30-50 MW	800 MW
Taille stockage H ₂	4,5 tH ₂	4,5 tH ₂	20-40 tH ₂	> 500 tH ₂
Impact réseau	Faible	Faible	Faible	Fort

Besoins journaliers en eau (eau potable, irrigation, industrie): **1 500 000 m³** en 2016

CONCLUSION

- → Mobilité terrestre : consommation énergétique doublée des solutions hydrogène
- → Des technologies en constante évolution
- → Besoin de repenser la mobilité localement
- → Nécessité de revoir l'objectif d'autonomie énergétique pour le secteur aérien

SOMMAIRE

- I. Contexte énergétique à La Réunion
- II. Méthodologie
- III. Cas des autocars à La Réunion
- IV. Cas d'une ligne ferroviaire à La Réunion
- V. Cas des secteurs maritime et aérien
- VI. Conclusion
- VII. Perspectives

PERSPECTIVES

L'hydrogène comme stockage réseau :

- → Simulations sur 5 ans entre 2000 et 2019
- → Utilisation de l'hydrogène dans le cas de sécheresses énergétiques
- → Jusqu'à plusieurs dizaines de tonnes d'hydrogène à stocker
- → Moins d'une utilisation /an
- → Alternatives possibles : STEP, vehicle-to-grid
- → Thèse débutée sur le sujet

L'hydrogène pour la fabrication d'engrais azotés localement :

→ ~ 32 000 tonnes d'engrais minéraux et de synthèse importés par an

MERCI DE VOTRE ATTENTION

L'HYDROGÈNE COMME VECTEUR DE LA MOBILITÉ À LA RÉUNION :

QUELS IMPACTS ET ALTERNATIVES POSSIBLES?

Agnès FRANÇOIS agnes.francois@yahoo.fr

