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Some basic notions on stability

We are considering the following class of state space model

ẋ(t) = f (x(t)),

x(0) = x0,
(1)

with t ∈ R and x ∈ Rn. Furthermore f : Rn × Rm → Rn. It is assumed that f (x(t))
satisfies the standard assumptions for existence and uniqueness of solutions, i.e., that
f (x(t)) is Lipschitz continuous with respect to x , uniformly in t , and piecewise
continuous in t .

We want to analyse the dynamics of the system

• Do the solutions of (1) remain bounded in time?
• If yes, do they in addition converge to some equilibrium point?
• If yes, can we say anything of the speed of convergence?
• Can we modify the solution with some external control input to impose a desired

closed-loop behaviour?
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Some basic notions on stability

We are considering the following class of state space model

ẋ(t) = f (x(t)),

x(0) = x0,
(2)

with t ∈ R and x ∈ Rn. Furthermore f : Rn × Rm → Rn. It is assumed that f (x(t))
satisfies the standard assumptions for existence and uniqueness of solutions, i.e., that
f (x(t)) is Lipschitz continuous with respect to x , uniformly in t , and piecewise
continuous in t .

Equilibrium position
An equilibrium point x∗ is a solution to

ẋ(x∗) = 0, i.e., f (x∗) = 0

Without loss of generality we will assume that x∗ = 0.
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Some basic notions on stability

An equilibrium position x = 0 of system (1) is
1. Stable if for any ε > 0 and t0 ≥ 0, there exists a δ(ε, t0) > 0 such that ‖x0‖ < δ

implies ‖x(t , x0)‖ < ε for all t ≥ t0,

2. Uniformly Stable if δ does not depend on t0,

3. Asymptotically Stable if it is stable and for any t0 ≥ 0 there exists ∆(t0) > 0 such
that every solution x(t , x0) for which ‖x0‖ < ∆ satisfies the relation

lim
t→∞
‖x(t , x0)‖ → 0 (3)

4. Uniformly Asymptotically Stable if it is uniformly stable, ∆ does not depend on t0,
and (3) holds uniformly with respect to t0 and x0 in the domain t0 ≥ 0, ‖x0‖ < ∆,
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Some notions on stability

An equilibrium position x = 0 of system (1) is
1. Globally Asymptotically Stable if it is stable and relation (3) holds for any t0 ≥ 0

and x0,

2. Uniformly Globally Asymptotically Stable if it is uniformly stable and relation (3)
holds for any t0 ≥ 0 and x0 uniformly relative to t0 and x0 in the domain t0 ≥ 0,
x0 ∈ K , where K is arbitrary compact in the x-space,

3. Exponentially Asymptotically Stable if there exist positive constants ∆, M, and α
such that every solution x(t , x0), for which ‖x0‖ < ∆, satisfies the relation

‖x(t , x0)‖ < M‖x0‖e−α(t−t0) (4)

for all t ≥ t0 ≥ 0, and

4. Globally Exponentially Asymptotically Stable if there exist positive constants M
and α such that relation (4) holds for t ≥ t0 ≥ 0 and arbitrary t0 ≥ 0 and x0.
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Some notions on stability

Figures taken from:
http://www.math24.net/
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Some notions on stability

How do we analyse stability?

Lyapunov stability theory

• Lyapunov’s direct method (second method)→ non-linear systems
• Lyapunov’s indirect method (first method)→ linear systems

Lyapunov’s direct method allows to determine the stability of a system without explicitly
integrating the differential equations. The method is a generalization of the idea that if
there is some “measure of energy” in a system, then we can study the rate of change
of the energy of the system to ascertain stability.
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Some notions on stability

Let Bε be a ball of size ε around the origin, Bε = x ∈ Rn : x < ‖ε‖.

Positive definite function
A continuous function V : Rn → R is a locally positive definite function if V (0) = 0 and
for x ∈ Bε, x 6= 0→ V (x) > 0. If Bε is the whole state space, then V (x) is globally
positive definite.

A positive definite function is like an energy function.
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Lyapunov’s direct method

Theorem: Lyapunov stability Let V (x) be a non-negative function with continuous
partial derivatives such that

• V (x) is positive definite on Bε, and V̇ ≤ 0 locally in x and for all t , then the origin
of the system is locally stable (in the sense of Lyapunov).

• If in addition V (x)→∞ when ‖x‖ → ∞, then the system is globally stable.

Theorem: Asymptotic stability Let V (x) be a non-negative function with continuous
partial derivatives such that

• V (x) is positive definite on Bε, and V̇ < 0, ∀x ∈ Bε/{0} and V (0) = 0 locally in x
and for all t , and then the origin of the system is locally asymptotically stable.

• If in addition V (x)→∞ when ‖x‖ → ∞, then the system is globally
asymptotically stable.
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Lyapunov’s direct method

Figure: taken from: http://www.math24.net/

For physical systems: relate the physical energy with Lyapunov functions
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Stabilization of passive systems

Let us consider systems arising from some physical energy model. We then usually
have

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

So if H(x) qualifies as a Lyapunov function and S(x) vanishes at x = 0 (and only in
x = 0), then the system is asymptotically stable!

So why do we need the control then?
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Stabilization of passive systems

• What if we want to increase the rate of convergence?: damping injection,
• What if we want to stabilize at some different equilibrium point, x = x∗, x∗ 6= 0:

Energy shaping,
• What if S(x) vanishes for some x 6= 0 or S(x) = 0?: damping injection + Energy

shaping
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PHS are dissipative and passive systems

Consider the system

ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)), (5)

with t ∈ R, x ∈ Rn, u ∈ Rm and y ∈ Rp . Furthermore f : Rn × Rm → Rn and
h : Rn × Rm → Rp . Let us addition define the supply rate w(t) = w(u(t), y(t)),∫ t

0
|w(u(τ), y(τ))dτ | <∞

Dissipative systems
The system (5) is said to be dissipative if there exists a so-called storage function
V (x) ≥ 0 such that the following dissipation inequality holds:

V (x(t)) ≤ V (x(0)) +

∫ t

0
w(u(τ), y(τ))dτ

along all possible trajectories of (5) starting at x(0), for all x(0), t ≥ 0.
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Passive systems

A particular case of dissipative systems are passive systems:

Passive systems

Suppose that the system (5) is dissipative with supply rate w(u, y) = uT y and storage
function V (x(t)) with V (0) = 0; i.e. for all t ≥ 0 we have that

V (x(t)) ≤ V (x(0)) +

∫ t

0
u(τ)>y(τ)dτ,

Then the system is passive.

Passive systems are a subclass of dissipative systems with the specific properties
• The supply rate is defined by the product between inputs and outputs

w(u, y) = uT y ,
• The minimum of the storage function is at the origin V (0) = 0.
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Passive systems

The dissipation of a passive system may also be explicitly taken into account:

Strictly passive systems
A system (5) is said to be strictly state passive if it is dissipative with supply rate
w = u>y and the storage function V (x(t)) with V (0) = 0, and there exists a positive
definite function S(x) such that for all t ≥ 0:

V (x(t)) = V (x(0)) +

∫ t

0
u(τ)>y(τ)dτ −

∫ t

0
S(x(τ))dτ ,

If the equality holds and S(x) = 0, then the system is said to be lossless
(conservative).

The function S(x) is called the the dissipation rate.
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Passive systems

Why are we interested in passive systems?
• Many physical systems are passive with respect to the storage function defined by

their physical energy function and with respect to their natural supply rate (given
by the physical inputs and outputs),

• Its a non-linear approach (does not require any assumption of linearity),
• The physical energy may be used as a candidate Lyapunov function to analyse

stability.
• A “well defined” interconnection of passive system is again a passive system.
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Stability of passive systems

Recall the passivity inequality

V (x(t)) ≤ V (x(0)) +

∫ t

0
u(τ)>y(τ)dτ,

if the storage function V is strictly increasing and x = 0 is an isolated global minimum,
then the output feedback u = 0 stabilizes the system at x = 0 (LaSalle’s inv. Principle).

u = 0

V̇ ≤ 0

For many physical systems: Energy = storage function = Lyapunov function
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Port-Hamiltonian control system

Within this formalism a physical system is defined by the interconnection between
energy storage elements, resistive elements, and the environment:

This defines a natural space: F := FS × FR × FP ; E := ES × ER × EP
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Port-Hamiltonian control systems

The interconnection structure satisfies the power preserving property

e>s fs + e>R fR + e>p fp = 0

or in terms of the energy storing elements

Ḣ(x(t)) = −e>s fs = e>R fR + e>p fp

which yields the energy balance equation

H(x(t)) = H(x(0)) +

∫ t

0
e>R (τ)fR(τ) + e>p (τ)fp(τ)dτ

Dirac structure→ port-Hamiltonian systems
The power preserving property is defined by the geometric notion of a Dirac structure,
which naturally defines port-Hamiltonian control systems.
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Port-Hamiltonian control systems

Explicit PHS

ẋ =
(
J − R

)∂H
∂x

+ gu(t), f =
(
J − R

)
e + geext

y = g>
∂H
∂x

= (g>e)

Two geometric structures: J(x) and R(x) = R(x)> ≥ 0, the interconnection and
damping matrices

The energy-balance is

Ḣ = u>(t)y(x(t))−
∂H
∂x

>
(x(t))R(x(t))

∂H
∂x

(x(t)),

Ḣ ≤ u>(t)y(t),

Dissipative PHS are strictly-passive if the Hamiltonian H is bounded from below.
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Stability of strictly passive systems

Recall the strict passivity inequality

V (x(t)) ≤ V (x(0)) +

∫ t

0
u(τ)>y(τ)dτ −

∫ t

0
S(x(τ))dτ,

if the storage function V is strictly increasing, x = 0 is an isolated global minimum and
S(x(t)) only vanishes at x = 0, then the output feedback u = 0 asymptomatically
stabilizes the system at x = 0 (LaSalle’s inv. Principle).

u = 0

V̇ ≤ −S(x(t))

For many physical systems: physical dissipation = dissipation rate
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Examples: RLC circuit and MSD system

Show that the RLC and the MSD are strictly passive and give the corresponding PHS
models.
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Example: RLC circuit

Let us consider a simple linear RLC circuit:

Constitutive relations

us = Vin

ur = RIr
φ = LIL
Q = CuC

Dynamic relations

uL =
dφ
dt
, or in integral form φ(t) = φ(t0) +

∫ t

0
uL(τ)dτ

IC =
dQ
dt
, or in integral form Q(t) = Q(t0) +

∫ t

0
IC(τ)dτ
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Example: RLC circuit

Interconnection relations (Kirchkoff’s laws):
∑

u = 0 voltage law,
∑

i = 0 current law

Using the interconnection relations together with the constitutive and dynamical
relations we obtain the state space model

dQ
dt

=
φ

L
dφ
dt

= −
Q
C
− R

φ

L
+ Vin

with state variables x = [Q, φ] and input Vin.
• If the initial conditions Q(t0) and φ(t0) are known, together with the profile Vin,

then the time evolution of the system is fully determined for all t > t0.

Doctoral course UFC-ST 26 / 103



Example: RLC circuit

What about the energy of the systems?
Energy = Energy stored in the capacitor + Energy stored in the inductor

H(x(t)) =
1
2
φ

L

2
+

1
2

Q
C

2

The time variation of the energy is given by

dH(x(t))

dt
=
∂H
∂x

> dx
dt

=

(
Q
C

)(
φ

L

)
−
(

Q
C

)(
φ

L

)
+ Vin

(
φ

L

)
− R

(
φ

L

)2

= Vin

(
φ

L

)
− R

(
φ

L

)2
= VinIL − RI2

L

Hence, the balance equation characterizing the time variation of energy can be written
as

H(t) = H(t0) +

∫ t

0
Vin(τ)IL(τ)dτ −

∫ t

0
RIL(τ)2dτ
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Example: mass-spring-damper system

Let us consider a simple linear translational MSD system:

Constitutive relations

Fs = Fin

FB = BvB

p = MvM

q = K−1FK

Dynamic relations

FM =
dp
dt
, or in integral form p(t) = p(t0) +

∫ t

0
FM (τ)dτ

vK =
dq
dt
, or in integral form q(t) = q(t0) +

∫ t

0
vK (τ)dτ
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Example: mass-spring-damper system

Using the interconnection relations (Kirchkoff’s laws) together with the constitutive and
dynamical relations we obtain the state space model

dq
dt

=
p
M

dp
dt

= −
q

K−1
− B

p
M

+ Fin

with state variables x = [q, p] and input Fin.
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Example: MSD system

What about the energy of the systems?
Energy = Energy stored in the mass + Energy stored in the spring

H(x(t)) =
1
2

p
M

2
+

1
2

q
K−1

2

The time variation of the energy is given by

dH(x(t))

dt
=
∂H
∂x

> dx
dt

=
( q

K−1

)( p
M

)
−
( q

K−1

)( p
M

)
+ Fin

( p
M

)
− D

( p
M

)2

= Fin

( p
M

)
− B

( p
M

)2
= FinvM − Bv2

M

The balance equation characterizing the time variation of energy can be written as

H(t) = H(t0) +

∫ t

0
Fin(τ)vM (τ)dτ −

∫ t

0
BvM (τ)2dτ
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Port-modelling of physical systems

Let us look closer to the energy balance

H(t) = H(t0) +

∫ t

0
uin(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
R(x)y(τ)2dτ︸ ︷︷ ︸

dissipated energy

The balance equations expresses conservation of some physical quantity: Energy,
mass, volume, etc...

The existence of balance equations is the base for dissipative and passive system
theory.
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Example: the RLC circuit

Let us first consider a lossless LC circuit. The energy is

H(x(t)) =
1
2

Q
C

2
+

1
2
φ

L

2

The interconnection structure just characterize the exchange of energy between the
inductor and the capacitor:

J =

[
0 1
−1 0

]
.

The internal dynamics of the system is then given by

ẋ = J
∂H
∂x

= J

[
Q
C
φ
L

]
=

[
φ
L
−Q

C

]
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Example: the RLC circuit

Let us consider the complete RLC circuit, with dissipation and input port. The energy
remains the same

H(x(t)) =
1
2

Q
C

2
+

1
2
φ

L

2

The interconnection structure just characterize the exchange of energy between the
inductor and the capacitor, but in this case we have to add an additional structure
matrix that characterizes the dissipation of the system and an input vector field

J =

[
0 1
−1 0

]
, R =

[
0 0
0 R

]
, gu =

[
0
1

]
u

The complete dynamics of the system is now given by

ẋ = (J − R)
∂H
∂x

+ gu = (J − R)

[
Q
C
φ
L

]
+ gu =

[
φ
L

−Q
C − R φ

L + Vin

]
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Example: the MSD system

Let us first consider a lossless MS system. The energy is

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2

The interconnection structure just characterize the exchange of energy between the
mass and the spring:

J =

[
0 1
−1 0

]
.

The internal dynamics of the system is then given by

ẋ = J
∂H
∂x

= J
[ q

K−1
p
M

]
=

[ p
M

− q
K−1

]
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Example: the MSD system

Let us consider the complete MSD system, with dissipation and input port. The energy
remains the same

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2

The interconnection structure remains the same, but in this case we have to add an
additional structure matrix that characterizes the dissipation of the system and an input
vector field

J =

[
0 1
−1 0

]
, R =

[
0 0
0 B

]
, gu =

[
0
1

]
u

The complete dynamics of the system is now given by

ẋ = (J − R)
∂H
∂x

+ gu = (J − R)

[ q
K−1

p
M

]
+ gu =

[ p
M

− q
K−1 − B p

M + Fin

]
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Examples: RLC circuit and MSD system

H(x(t)) =
1
2
φ

L

2
+

1
2

Q
C

2
≥ 0, H(0) = 0.

Hence H qualifies as a potential storage function. Now,

H(t) = H(t0) +

∫ t

0
Vin(τ)IL(τ)dτ −

∫ t

0
RIL(τ)2dτ .

The system is passive if we choose u = Vin and y = IL:

H(t) ≤ H(t0) +

∫ t

0
Vin(τ)IL(τ)dτ .

Furthermore, if the we choose the dissipation rate as S(x) = RIL(τ)2, then the system
is strictly passive

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.
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Examples: RLC circuit and MSD system

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2
≥ 0, H(0) = 0.

Hence H qualifies as a potential storage function. Now,

H(t) = H(t0) +

∫ t

0
Fin(τ)vM (τ)dτ −

∫ t

0
BvM (τ)2dτ .

The system is passive if we choose u = Fin and y = vM :

H(t) ≤ H(t0) +

∫ t

0
Fin(τ)vM (τ)dτ .

Furthermore, if the we choose the dissipation rate as S(x) = BvM (τ)2, then the
system is strictly passive

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.
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Examples: RLC circuit and MSD system

Some remarks
• The chosen inputs and outputs correspond to the physical input and outputs of the

system: input voltage and input force / current in the inductor and velocity of the
mass

• If we eliminate the resistive components, resistor (R) and damper (B), the supply
rate is zero and the system is a lossless (conservative) passive system. Indeed,

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

i.e., the energy is conserved.
• The product u>y has the units of power, i.e., it defines a power product. This has

strong implications for modelling: if the input and outputs define power products
the power preserving interconnection of physical (passive) systems defines again
a physical (passive) system.
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Stabilization of passive systems

• What if we want to increase the rate of convergence?: damping injection,
• What if we want to stabilize at some different equilibrium point, x = x∗, x∗ 6= 0:

Energy shaping,
• What if S(x) vanishes for some x 6= 0 or S(x) = 0?: damping injection + Energy

shaping
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Stabilization of PHS: Damping injection

Consider the energy balance equation of a passive system:

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

And assume that H(x) qualifies as a Lyapunov function candidate. If we select the
input u = −Ky , with K a positive definite constant matrix, then the energy balance
equation becomes:

H(t) = H(t0) −K
∫ t

0
y2(τ)dτ︸ ︷︷ ︸

controller

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

,

H(t) = H(t0) −
∫ t

0

(
Ky2(τ)dτ + S(x(τ))

)
dτ︸ ︷︷ ︸

dissipated energy

.
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Example: mass-spring-damper system

Let us consider a simple linear translational MSD system:

Constitutive relations

Fs = Fin

FB = BvB

p = MvM

q = K−1FK

Dynamic relations

FM =
dp
dt
, or in integral form p(t) = p(t0) +

∫ t

0
FM (τ)dτ

vK =
dq
dt
, or in integral form q(t) = q(t0) +

∫ t

0
vK (τ)dτ
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Examples: the MSD system

H(x(t)) =
1
2

q
K−1

2
+

1
2

p
M

2
≥ 0, H(0) = 0.

Hence H qualifies as a storage function and as a candidate Lyapunov function. Now,

H(t) = H(t0) +

∫ t

0
Fin(τ)vM (τ)dτ −

∫ t

0
BvM (τ)2dτ .

The system is passive if we choose u = Fin and y = vM , and furthermore, if we select
u = −Ky , (Fin = −KvM ), then

H(t) = H(t0)−
∫ t

0

(
Kv2

M (τ) + Bv2
M (τ)

)
dτ .

= H(t0)−
∫ t

0
(K + B)︸ ︷︷ ︸

B′

v2
M (τ)dτ

We have changed (increased) the system’s natural damping.
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Stabilization of PHS: Energy Shaping

Consider the energy balance equation of a passive system:

H(t)− H(t0)︸ ︷︷ ︸
stored energy

=

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

Assume that we want to change the closed-loop equilibrium to some forced (controlled)
equilibrium x = x∗. In that case H(x∗) 6= 0, hence H(x) can no longer be used as
Lyapunov function!

We need to consider a new Lyapunov function candidate
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Stabilization of PHS: Energy shaping

Let us consider the energy balance equation and assume we have no dissipation

H(t)− H(t0) =

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸
controller

The idea is to construct a new energy function, by using the (state) feedback u = β(x)

Hd (x , x∗) = H(x)−
∫ t

0
β(x(τ))y(τ)dτ

such that Hd , with Hd (x∗) = 0 qualifies as a Lyapunov function for the closed-loop
system.
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Stabilization of PHS: Energy shaping

If this function exist (...why should it exist?) it will be a state function such that
Hd (x) = H(x) + Ha(x), hence

Ha(x , x∗) = −
∫ t

0
β(x(τ))y(τ)dτ

The time derivative of Hd (x) along the trajectories of the system is given by

Ḣd = Ḣ + Ḣa = Ḣ +
∂Ha

∂x

>
ẋ

⇒
∂Ha

∂x

>
ẋ = −β(x)y

Hence, for dynamical systems of the form ẋ = f (x , u), y = h(x), in order for the
function Ha to exist, the following PDE should be satisfied

∂Ha

∂x

>
f (x , β(x)) = −β(x)h(x)

Doctoral course UFC-ST 46 / 103



Stabilization of PHS: Energy shaping

Some remarks
• Energy shaping requires the solution of a PDE: the matching equation. Not an

easy task for general non-linear systems

Ha(x , x∗) = −
∫ t

0
β(x(τ))y(τ)dτ

• The existence of solutions for the PDE is strongly related with the existence of
physical invariants. In the case of port-Hamiltonian systems: Casimir functions.

• For systems arising from physical applications the energy shaping technique has
been proven to be a powerful stabilization method.
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Example: RLC circuit

Let us consider a simple linear RLC circuit:

Constitutive relations

us = Vin

ur = RIr
φ = LIL
Q = CuC

Dynamic relations

uL =
dφ
dt
, or in integral form φ(t) = φ(t0) +

∫ t

0
uL(τ)dτ

IC =
dQ
dt
, or in integral form Q(t) = Q(t0) +

∫ t

0
IC(τ)dτ
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Example: RLC circuit

The state space model

dQ
dt

=
φ

L
dφ
dt

= −
Q
C
− R

φ

L
+ Vin

with state variables x = [Q, φ], output y = φ
L = x2

L and input Vin. The energy of the
system is given by

H(x) =
1
2

x1

C

2
+

1
2

x2

L

2

• If Vin = 0, the natural equilibrium is x = (0, 0). If on other hand Vin = V∗, the
forced equilibrium point is x = (x∗1 , 0), with x∗1 = CV∗.
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The matching condition ∂Ha
∂x
>

f (x , β(x)) = −β(x)h(x)

∂Ha

∂x1

x2

L
−
∂Ha

∂x2

(
x1

C
− R

x2

L
− β(x)

)
= −

x2

L
β(x)

Notice that the forced equilibrium corresponding to the x2 coordinate already is a
minimum of the physical energy H(x), hence we only need to shape the closed-loop
energy in the x1 coordinate. Hence

Ha = Ha(x1)

and the matching equation becomes

∂Ha

∂x1

x2

L
= −

x2

L
β(x)

Hence, the function Ha exists if the feedback is chosen as β(x) = − ∂Ha
∂x1
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Example: RLC circuit

Beautiful!

The matching equation (PDE) is automatically solved for any Ha = Ha(x1) provided
that the state feedback is of the form β(x) = − ∂Ha

∂x1
.

• It only remains to select Ha(x1) such that Hd = H + Ha has a minimum at
x∗ = (x∗1 , 0).

Recall that the open-loop energy function is

H(x) =
1
2

x1

C

2
+

1
2

x2

L

2

Hence if we chose

Ha(x1) =
1

2Ca
x2

1 −
(

1
Ca

+
1
C

)
x1x∗1

The closed-loop energy function Hd = H + Ha

Hd (x) =
1
2

(x1 − x∗1 )

(C + Ca)

2

+
1
2

x2

L

2
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Example: RLC circuit

Hd (x , x∗) has a minimum at x∗ = (x∗1 , 0) if and only if Ca > −C

The resulting controller is

β(x) = −
∂Ha

∂x1
(x) = −

1
2Ca

x2
1 −

(
1

Ca
+

1
C

)
x1x∗1
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Final remarks

• We have revised some concepts from passivity based control techniques:
Damping injection and Energy Shaping

• We have exploited the natural passivity of the system to design stabilizing
controllers

• Works well in many applications, but.... we did not see the use of physical
invariants, the dissipation obstacle,...

What remains for tomorrow
• Control by interconnection
• IDA-PBC
• Irreversible port-Hamiltonian systems...
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Port-Hamiltonian control systems

Let us recall the state space model of a port-Hamiltonian control system

ẋ =
(
J(x)− R(x)

)∂H
∂x

(x) + g(x)u,

y = g>(x)
∂H
∂x

(x),

where where x ∈ Rn is the state vector, u ∈ Rm, m < n, is the control action,
H : Rn → R is the total stored energy, J(x) = −J(x)> is the n × n natural
interconnection matrix, R(x) = R(x)> ≥ 0 is the n × n damping matrix, g(x), is the
n ×m input map and u, y ∈ Rm, are conjugated variables whose product has units of
power.

Ḣ = u>y −
∂H
∂x

>
R
∂H
∂x

,

Ḣ ≤ u>y ,
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Control by interconnection

A controlled system may be viewed as a plant system interconnected with a control
system exchanging energy

The interconnection is power continuous if

u>(t)y(t) + u>c (t)yc(t) = 0, ∀t
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Control by interconnection

For instance: a negative feedback

The negative feedback defines the following relation

u = −yc

y = uc
⇒ u>y + u>c yc = −y>c y + y>yc = 0
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Control by interconnection

Let us consider the feedback

Now u = v − yc and uc = y + vc . Let the plant and controller have state variables x
and ξ and energy functions H(x) and H(ξ). If the maps u → y and uc → yc are
passive,

Then the map (v , vc)→ (y , yc) is passive with energy function Hd (x , ξ) = H(x) + H(ξ).
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Control by interconnection

Assume that the plant and the controller are PHS

Σ :


ẋ =[J(x)− R(x)]

∂H
∂x

(x) + g(x)u

y =g>(x)
∂H
∂x

(x)

x ∈ X

Σc :


ξ̇ =[Jc(ξ)− Rc(ξ)]

∂Hc

∂ξ
(ξ) + gc(ξ)uc

yc =g>c (ξ)
∂Hc

∂ξ
(ξ)

ξ ∈ Xc

Booth are passive systems, so a power preserving interconnection, u = −yc , y = uc ,
yields a passive closed-loop system.
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Control by interconnection

The closed-loop systems looks

[
ẋ
ξ̇

]
=


[

J(x) −g(x)g>c (ξ)
gc(ξ)g>(x) Jc(ξ)

]
︸ ︷︷ ︸

Jcl (x,ξ)

−
[

R(x) 0
0 Rc(ξ)

]
︸ ︷︷ ︸

Rcl (x,ξ)


[
∂Hd
∂x (x)
∂Hd
∂ξ

(ξ)

]

[
y
yc

]
=

[
g(x) 0

0 gc(ξ)

]
︸ ︷︷ ︸

gcl

[
∂Hd
∂x (x)
∂Hd
∂ξ

(ξ)

]

With total energy function

Hd (x , ξ) = H(x) + Hc(ξ)

We may equivalently write the closed-loop system as

ẇ = (Jcl − Rcl )
∂Hd

∂w
, ycl = g>cl

∂Hd

∂w

with w = [x ξ].
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Control by interconnection

So, what now?
We would like to get an energy function in terms of x only: Hd = Hd (x), so that we can
assign the minimum at a desired point and characterize it in terms of the plant system.

In order achieve this, we must restrict the dynamics to a submanifold of the (x , ξ)
space parametrized by x . This means that we are looking for a submanifold

ΩC = (x , ξ) : ξ = F (x)− C

which is dynamically invariant, i.e.,(
∂Fi

∂x

>
ẋ − ξ̇i

)
ξ=Fi (x)−C

= 0
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Control by interconnection

Casimir functions
Let us look for structural invariants that relates each state of the controller with the
states of the plant:

Ci (x , ξi ) = Fi (x)− ξi

In order to relate all the states of the controller with the state of the plant we define
F (x) = [F1(x),F2(x), . . . ,Fnc (x)], and define the following Casimir function

C =
n∑

i=1

(Fi (x)− ξi ) =
n∑

i=1

Ci (x , ξi )

C is an invariant of the system, hence

Ċ =
∂C
∂w

>
ẇ =

∂C
∂w

> (
Jcl
∂Hcl

∂w

)
= 0

But furthermore, C is a structural invariants, so it should be invariant with respect to the
structure of the system:

∂C
∂w

>
Jcl = 0
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Control by interconnection

Casimir functions
Let us look for structural invariants that relates each state of the controller with the
states of the plant:

C =
n∑

i=1

Ci (x , ξi ) =
n∑

i=1

(Fi (x)− ξi )

we obtain the following matching condition

[
∂F
∂x
>

(x) −I
] [J(x)− R(x) −g(x)g>C (ξ)

gC(ξ)g>(x) JC(ξ)− RC(ξ)

]
︸ ︷︷ ︸

Matching condition

[
∂Hd
∂x (x)
∂Hd
∂ξ

(ξ)

]
= 0

• Only the term in blue is considered in the matching condition because we want the
Casimir functions to be structural invariants of the system: not depend on
Hd (x , ξ).
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Control by interconnection

The condition for existence of Casimir functions for the closed loop system[
∂F
∂x
>

(x) −I
] [J(x)− R(x) −g(x)g>C (ξ)

gC(ξ)g>(x) JC(ξ)− RC(ξ)

]
= 0

may be written out as

Matching equations

∂F
∂x

>
(x)J(x)

∂F
∂x

(x) = Jc(ξ)

R(x)
∂F
∂x

(x) = 0 Dissipation obstacle!

Rc(ξ) = 0

∂F
∂x

>
(x)J(x) = gc(ξ)g>(x)
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Control by interconnection

The closed-loop dynamic then takes the form

ẋ =
[
J(x)− R(x)

]∂H
∂x

(x)− g(x)g>C (ξ)
∂Hc

∂ξ
(ξ)

Using the second and fourth M.C. we get

ẋ =
[
J(x)− R(x)

](∂H
∂x

(x)+
∂F
∂x

(x)
∂Hc

∂ξ
(ξ)

)
Since ξ = F (x)− C, we use the chain-rule for differentiation to establish

∂F
∂x

(x)
∂Hc

∂ξ
(ξ) =

∂Hc

∂x
(F (x)− C)
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Control by interconnection

Hence we obtain:

ẋ =
[
J(x)− R(x)

](∂H
∂x

(x)+
∂Hc

∂x
(F (x)− C)

)

Or equivalently

ẋ =
[
J(x)− R(x)

]∂Hd

∂x
(x)

With closed-loop energy Hd (x) = H(x) + Hc(F (x)− C).
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Control by interconnection

Let us interpret the control in terms of energy balancing. Since Rc = 0, the energy
balance equation of the controller is

dHc

dt
= u>c yc

Hence, along any invariant submanifold ΩC , we have

dHd

dt
=

dH
dt

+
dHc

dt
=

dH
dt
−u>y (u>c yc = −u>y)

and integrating (up to some constant) we obtain

Hd (t) = H(t)−
∫ t

0
u>(τ)y(τ)dτ︸ ︷︷ ︸

Hc

We obtain the general M.E!: Hc(t) = −
∫ t

0 u>(τ)y(τ)dτ .
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Example: RLC circuit

Let us consider a simple linear RLC circuit:

Constitutive relations

us = Vin

ur = RIr
φ = LIL
Q = CuC

Dynamic relations

uL =
dφ
dt
, or in integral form φ(t) = φ(t0) +

∫ t

0
uL(τ)dτ

IC =
dQ
dt
, or in integral form Q(t) = Q(t0) +

∫ t

0
IC(τ)dτ
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Example: the RLC circuit

Let us consider a RLC circuit, with dissipation and input port. The energy is

H(x(t)) =
1
2

Q
C

2
+

1
2
φ

L

2

The interconnection and dissipation matrix and input vector field are

J =

[
0 1
−1 0

]
, R =

[
0 0
0 R

]
, gu =

[
0
1

]
u

and the dynamic is

ẋ = (J − R)
∂H
∂x

+ gu = (J − R)

[
Q
C
φ
L

]
+ gu =

[
φ
L

−Q
C − R φ

L + Vin

]

with state variables x = [Q, φ], output y = φ
L = x2

L and input u = Vin

• If Vin = 0, the natural equilibrium is x = (0, 0). If on other hand Vin = V∗, the
forced equilibrium point is x = (x∗1 , 0), with x∗1 = CV∗.
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Example: RLC circuit

Let us synthesis the controller using the M.C.s.
• From physical considerations we know that we only need to shape the x1

coordinate: F is only one scalar function.
• From M.E.2 we obtain that ∂F

∂x2
= 0.

• Then, from M.E.1. we obtain that Jc = 0, and from M.E.3 that Rc = 0.
• Finally from M.E.4 we have that ∂F

∂x1
= gc(ξ) and that ξ ∈ R.

We would like to have

Hc(x1) = 1
2Ca

x2
1 −

(
1

Ca
+ 1

C

)
x1x∗1 , such that Hd (x) =

1
2

(x1 − x∗1 )

(C + Ca)

2

+
1
2

x2

L

2

This is achieved if we select F (x1) = x1 and C = 0 on the invariant submanifold such
that ξ = x1. The control system is then given by (using condition ∂F

∂x1
= gc(ξ))

ξ̇ = uc

yc =
∂Hc

∂ξ
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The pendulum without damping

The dynamic equations

q̇ =
p
m

ṗ = −mg sin(q) + u

with state variables x = [p, q], with q the configuration and p the momentum.

Propose a PH model and design a stabilizing controller using the Casimir method and
a control system given by:

ξ̇ = uc

yc =
∂Hc

∂ξ
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Example: pendulum (model)

Consider the pendulum without damping

q̇ =
p
m

ṗ = −mg sin q + u

with state variables x = [q, p]T with q the configuration and p the momentum.
The port Hamiltonian model is:

d
dt

(
q
p

)
=

(
0 1
−1 0

)
︸ ︷︷ ︸

J

(
∂H0
∂q
∂H0
∂p

)
+

(
0
1

)
︸ ︷︷ ︸

g

u

y = (0 1)

(
∂H0
∂q
∂H0
∂p

)
= p

m

with Hamiltonian :H0(q, p) = mg(1− cos q) + 1
2m p2
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pendulum (extended Casimir functions)

Recall: we look for Casimir functions such as:

C (q, p, xc) = F (q, p)− xc

that is functions F (q, p) satisfying:

1. input vector field is Hamiltonian: g =

(
0
1

)
= J (x) ∂F

∂x =

(
∂F
∂p
− ∂F
∂q

)
2. the gradient of F is transversal to g: LgF (x) = 0 = ∂F

∂x
t
g (x) = ∂F

∂p

hence a generating function is: F (q, p) = −q
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pendulum (control)

For the controller design we choose a function HC(xc) such that
Hd (x) = H0 (x) + Hc ◦ F has a minimum at the desired equilibrium x∗ = (x∗1 , 0).
The simplest choice is given by

HC(xc) = mg(cos xc − 1) +
1
2

(xc + x∗1 )2

The control is finally obtained is:

u = −
∂HC

∂xc
(xc) |xc =−q = mg sin q − (q − x∗1 )

which is the well-known “proportional plus gravity compensation control
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Control by interconnection

Remarks
• The port-Hamiltonian structure provide important information for finding the

solutions of the control system,
• The control has physical interpretation in terms of interconnection and energy

balancing
• The Casimir method can be used to analyse new stability profiles of

interconnected systems
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Interconnection and Damping Assignment – Passivity Based
Control

Consider the following parallel RLC circuit

with x = [qC , φL], the charge in
the capacitor and the flux in the
inductance

The PH model is[
q̇C
φ̇L

]
=

[
− 1

R 1
−1 0

][ ∂H
∂qC
∂H
∂φL

]
+

[
0
1

]
u

y =
[
0 1

] [ ∂H
∂qC
∂H
∂φL

]
with

H(qC , φL) =
q2

C

2C
+
φ2

L
2L
,

the total electromagnetic energy.
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Interconnection and Damping Assignment – Passivity Based
Control

Recall the dissipation obstacle

R(x)
∂F
∂x

(x) = 0.

For the parallel RLCS circuit it becomes:

∂F
∂qC

(qC , φL) = 0 ⇒ F = F (φL).

It’s only possible to shape the energy in the direction of one coordinate (φL). This is
known as the dissipation obstacle.

Physical interpretation: admissible equilibria are of the form q∗C = CV∗, φL = L
R V∗

for any constant V∗. The power delivered by the source, V∗ φL
L , is nonzero at any

equilibrium except for the trivial one. Hence, the source has to provide an infinite
amount of energy to keep any nontrivial equilibrium point (Impossible). Notice that pure
mechanical systems are free of this problem: any equilibrium point has velocities equal
to zero.
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Interconnection and Damping Assignment – Passivity Based
Control

Overcome the dissipation obstacle using a

State modulated control by interconnection (state modulated source)

IDA-PBC objective
Find a static state-feedback control u(x) = β(x) such that the closed-loop dynamics is
a PH system with interconnection and dissipation of the form

ẋ = (Jd − Rd )
∂Hd

∂x
,

Hd (x), has a strict local minimum at x∗,

Jd (x , u) = −Jd (x , u)T , the desired interconnection matrix,

Rd (x , u) = Rd (x , u)T ≥ 0, the desired dissipation matrix,
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Interconnection and Damping Assignment – Passivity Based
Control

The procedure consists in the matching of the open and (desired) closed-loop vector
fields: (

J(x)− R(x)
)∂H
∂x

(x) + g(x)β(x) =
(
Jd (x)− Rd (x)

)∂Hd

∂x
(x)

with u = β(x) the state modulated source. Define

Ja= Jd − J, Ja = −J>a
Ra= Rd − R, Ra = R>a ≥ 0

Ha= Hd − H

Then the matching condition becomes

(
Ja(x)− Ra(x)

)∂H
∂x

(x) + g(x)β(x) =
((

J(x) + Ja(x)
)
−
(
R(x) + Ra(x)

))∂Ha

∂x
(x)

with design parameters Ja, Ra and Ha.
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IDA-PBC: Proposition

Suppose that the following PDE is verified

g⊥(x)
(
Ja(x)− Ra(x)

)∂H
∂x

(x) = g⊥(x)
((

J(x) + Ja(x)
)
−
(
R(x) + Ra(x)

))∂Ha

∂x
(x)

where g⊥(x)g(x) = 0 and Hd (x) is such that

∂Hd

∂x
(x∗) = 0,

∂2Hd

∂x2
(x∗) > 0,

then the control

u = β(x) = (g>g)−1g>
[

(Jd − Rd )
∂Hd

∂x
− (J − R)

∂H
∂x

]
is such that the closed-loop system takes the PH form

ẋ = (Jd − Rd )
∂Hd

∂x
,

And closed-loop energy

Ḣd = −
∂H>d
∂x

Rd
∂Hd

∂x
< 0, ∀x 6= x∗ and Ḣd (x∗) = 0.
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Interconnection and Damping Assignment – Passivity Based
Control

Notice that for systems linear in the control may be interpreted as the optimal solution
to the linear least square problem

g(x)β(x) =

[(
Jd (x)− Rd (x)

)∂Hd

∂x
(x)−

(
J(x)− R(x)

)∂H
∂x

(x)

]
︸ ︷︷ ︸

b

with
β(x) = g†b, subject to the ME (I − g†g)b = 0

where

g† = (g>g)−1g> : Moore-Penrose pseudo-inverse of g and g†g> projector into rang(g)

(I − g†g) : family of anihilators of g and projector into ker(g)

Doctoral course UFC-ST 82 / 103



Remarks

Degrees of freedom in the design
• Jd and Rd are free–up to the constraint of skew–symmetry and positive

semidefiniteness, respectively.

• Hd may be totally, or partially fixed, provided we can ensure ∂Hd
∂x (x∗) = 0,

∂2Hd
∂x2 (x∗) ≥ 0 and probably a properness condition.

• there is an additional degree of freedom in g⊥(x) which is not uniquely defined by
g(x).

Attention: Requires the solution of a quasilinear PDE

the method of characteristics...
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Interconnection and Damping Assignment – Passivity Based
Control

Notice that the method can be equally applied to general input affine non-linear
systems

f (x) + g(x)β(x) =
(
Jd (x)− Rd (x)

)∂Hd

∂x
(x)

with f (x) a non-linear vector field.

Then the matching condition becomes

g⊥(x)f (x) = g⊥(x)
(
Jd (x)− Rd (x)

)∂Hd

∂x
(x)

and the control

u = β(x) = (g>g)−1g>
[

(Jd − Rd )
∂Hd

∂x
− f (x)

]
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Integral Action

IDA–PBC with integral action u = β(x) + v

v̇ = −KIg(x)
∂Hd

∂x
(x)

with KI = K>I > 0, preserves stability.

Indeed, define

W (x , v) = Hd +
1
2

v>K−1
I v

The closed-loop system is given by a power preserving interconnection

[
ẋ
v̇

]
=

[
Jd − Rd gKI
−K>I g> 0

][ ∂Hd
∂x
∂W
∂v

]

which is again a PHS.
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Existing Approaches to Solve the Matching Equation

Non–Parameterized IDA One extreme case
• fix Jd (x), Rd (x) and g⊥(x),
• (ME) becomes a PDE for Hd (x),
• among the family of solutions select one that assigns minimum.

Algebraic IDA At the other extreme:
• fix Hd (x),
• (ME) becomes an algebraic equation in Jd (x), Rd (x) and g⊥(x),

Parameterized IDA Restrict the desired energy function to a certain class,
• for instance, for mechanical systems

Hd (q, p) =
1
2

p>M−1
d (q)p +

1
2

Vd (q),

• (ME) becomes a PDE in Md (q) and Vd (q),
• imposes some constraints on Jd (x) and Rd (x).

Application of Poincare’s Lemma (applicable for systems NL in u):

∇H(x) = F−1
d (x)f (x , u).
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Example: parallel RLCS circuit

Consider the following parallel RLC circuit

with x = [qC , φL], the charge in
the capacitor and the flux in the
inductance

The PH model is[
q̇C
φ̇L

]
=

[
− 1

R 1
−1 0

][ ∂H
∂qC
∂H
∂φL

]
+

[
0
1

]
u

y =
[
0 1

] [ ∂H
∂qC
∂H
∂φL

]
with

H(qC , φL) =
q2

C

2C
+
φ2

L
2L
,

the total electromagnetic energy.
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Parallel RLCS circuit: matching equation

Choice of structure matrices and associated added Hamiltonian Ha (x):

1. choose added structure matrices

Ja(x) =

(
0 0
0 0

)
and Ra(x) =

(
0 0
0 Ra

)
Ra > −R

2. solve a PDE in Ha(x) using the left annihilator g⊥ (x) =
(

1 0
)

of

g (x) =

(
0
1

)
, the matching equation :

−g⊥ (x) (Ja − Ra)
∂H0

∂x
(x) = g⊥ (x) [(J (x) + Ja (x))− (R (x) + Ra (x))]

∂Ha

∂x
(x)

becomes:

0 =
(
− 1

R 1
)( ∂Ha

∂qc
∂Ha
∂φL

)
= −

1
R
∂Ha

∂qc
+
∂Ha

∂φL
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Parallel RLCS circuit: closed-loop equilibria

The solutions of the matching equation are:

Ha (qc , φL) = Φ (R qc + φL) Φ ∈ C∞ (R)

hence the closed-loop Hamiltonian is

Hd (qC , φL) = H (qC , φL) + Φ (R qc + φL) =
q2

C

2C
+
φ2

L
2L

+ Φ (R qc + φL)

The equilibrium in closed-loop is given by:

R
φ∗L
L
−

q∗C
C

= 0 and
φ∗L
L

+
∂Φ

∂ξ

([
1 +

R2C
L

]
φ∗L

)
= 0
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Parallel RLCS circuit: two possible H

1. Case 1: Φ (ξ) = k ξ2

2 then:

φ∗ ∈ R and k = −
(
L + R2C

)
L2

< 0

and Φ (ξ) is concave !

2. Case 2: Φ (ξ) = k ξ4

4 then:

φ∗ = ±
1√

(−k)
(
L + R2C

) and k =∈ R∗−

and Φ (ξ) is again concave !
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Parallel RLCS circuit: local positivity of Hd

Consider the Hessian of Hd at the equilibrium:

∂2Hd

∂qc , φ2
L

=

 1
C + R2 ∂2Φ

∂ξ2

(
Rq∗c + φ∗2L

)
R ∂2Φ
∂ξ2

(
Rq∗c + φ∗2L

)
R ∂2Φ
∂ξ2

(
Rq∗c + φ∗2L

) 1
L + ∂2Φ

∂ξ2

(
Rq∗c + φ∗2L

)


is definite positive iff:

1. either: 1
C + R2 ∂2Φ

∂ξ2

(
Rq∗c + φ2

L

)
> 0 or: 1

L + ∂2Φ
∂ξ2

(
Rq∗c + φ∗2L

)
> 0

2. and det ∂2Hd
∂qc ,φ2

L
> 0 i.e. : 1

LC

(
1 +

[
L + R2C

]
∂2Φ
∂ξ2

(
Rq∗c + φ∗2L

))
> 0

which reduces to: ∂
2Φ
∂ξ2

(
Rq∗c + φ2

L

)
> − 1

(R2C+L)
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Parallel RLCS circuit: two possible Φ

Check for the two examples the condition : ∂
2Φ
∂ξ2

(
Rq∗c + φ2

L

)
> − 1

(R2C+L)

1. Case 1: Φ (ξ) = k ξ2

2 the condition reduces to:(
L + R2C

)2
< L2

which is wrong !

2. Case 2: Φ (ξ) = k ξ4

4 then:

(−k) <
1(

L + R2C
) (φ∗L

L

)2

which leads to a solution !
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Parallel RLCS circuit: IDA-PBC control

The control law is given by :

β (x) =
[
gt (x) g (x)

]−1 gt (x){
[(J (x) + Ja (x))− (R (x) + Ra (x))] ∂Ha

∂x (x) + (Ja − Ra) ∂H
∂x (x)

}
which becomes :

β (qC , φL) = 1
(

0 1
) [( − 1

R 1
−1 −Ra

)( R ∂Φ
∂ξ

(R qC ,+φL)
∂Φ
∂ξ

(R qC ,+φL)

)

−
(

0 0
0 Ra

)( qC
C
φL
L

)]
or :

β (qC , φL) = (R − Ra) ∂Φ
∂ξ

(R qC ,+φL)− Ra
φL
L
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The levitating iron ball in a magnetic field

The mathematical model

φ̇1 = −Ri + u

ẏ = v

mv̇ = −Fm + mg

with u input voltage, R electric resistance,
mthe mass and g the gravitational constant,

Fm= −
∂Wc

∂y
(i, y) electro-mechanical coupling

Wc=
1
2

L(y)i2 non-linear inductance

and the non-linear inductance

L(y) = L∞ +
k

(a + y)
,

with L∞, a, k > 0 and φ = L(y)i .
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The levitating iron ball: the PH model

The port-Hamiltonian model

set as state variables:
x1 = φ total magnetic flux
x2 = y displacement of the ball
x3 = mv = p kinetic momentum

dx
dt

=


0 0 0

0 0 1
0 −1 0


︸ ︷︷ ︸

J

−

R 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

R

 ∂H
∂x

(x) +

1
0
0


︸︷︷︸

g

u

y =
[
1 0 0

] ∂H
∂x

(x) =
∂H
∂x1

= i

with total energy: H(x) = 1
2 L(x2)

x1
2 + 1

2m x3
2 −mgx2

∂H0

∂x
(x) =


x1

L(x2)
x3
m

− 1
2

dL
dx2

(x2)
(

x1
L(x2)

)2
−m g

 current through the coil, i
velocity of the ball
electro-motive+gravity force
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The levitating ball: coupling through energy

The coupling between the mechanical and magnetic domain does not occur through
the structure matrices

J − R =

−R 0 0
0 0 1
0 −1 0

 magnetic domain
mechanical potential domain
mechanical kinetic domain

The structure matrix is block-diagonal.

The coupling occurs through the Hamiltonian which is not
separated

H0(x) =
1

2 L (x2)
x1

2+
1

2m
x3

2 −mgx2
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The levitating ball: open-loop equilibria

The equilibria are given by (x∗, u∗) such that:

(J − R)
∂H
∂x

(x∗) + g u∗ =


R x∗1

L(x∗2 )
+ u∗

x∗3
m

− 1
2

dL
dx2

(
x∗2
)( x∗1

L(x∗2 )

)2
−m g

 = 0

and may be parametrized by the current: y∗ = ∂H
∂x1

(x∗) = i∗: x∗1
x∗2
x∗3

 =

 L∞y∗ +
√

2mg

−a +
√

k
2mg

0

y∗

 and u∗ = R y∗

they are unstable (see linearised system).

Doctoral course UFC-ST 97 / 103



The levitating ball: matching equation

Choice of structure matrices and associated added Hamiltonian Ha (x):

1. choose added structure matrices:

Ja(x) =

 0 0 α
0 0 0
−α 0 0

 and Ra(x) = 03

What’s the physical interpretation?

2. Use the left annihilator g⊥ (x) =

(
0 1 0
0 0 1

)
, establish the PDE in Ha :

−
(

0 0 0
−α 0 0

)
∂H0
∂x1
∂H0
∂x2
∂H0
∂x3

 =

(
0 0 1
−α −1 0

)
∂Ha
∂x1
∂Ha
∂x2
∂Ha
∂x3


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The levitating ball: added Hamiltonian

From : ∂Ha
∂x3

= 0 the added potential is a function Ha (x1, x2) which does not depend on
the velocity and satisfies :

α
∂H0

∂x1
= −α

∂Ha

∂x1
−
∂Ha

∂x2

with solution:

Ha (x1, x2) = −
∫ x1

0

χ

L
(

x2 −
(χ−x1)
α

)dχ+ Φ
(

x2 −
x1

α

)

For instance, if L (x2) = k
(x2+a)

then

Ha (x1, x2) = 1
2k

(
x3

1
3α − x2

1 (x2 + a)

)
+ Φ

(
x2 −

x1
α

)
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The levitating ball: IDA-PBC control

The control law is given by :

β (x) = 1
(

1 0 0
)︸ ︷︷ ︸

=[gt g]−1gt

 −R 0 α
0 0 1
−α −1 0

 ∂Ha
∂x (x)

+

 0 0 α
0 0 0
−α 0 0

 ∂H0
∂x (x)


or :

β (x) = −R
∂Ha

∂x1
(x) + α

∂Ha

∂x3
(x) + α

∂H0

∂x3
(x)
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The levitating iron ball: the closed-loop system

dx
dt

=


 0 0 α

0 0 1
−α −1 0


︸ ︷︷ ︸

J

−

R 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

R

 ∂Hd

∂x
(x)
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Remarks

Hamiltonian methods for the control of physical systems:

1. use the interconnection of Port Hamiltonian systems and Casimir functions

2. assign closed-loop Hamiltonian function and structure matrices.

A control synthesis based on insight of desired physical behaviour in closed-loop:

1. design directly interconnection of the system with environment and indirectly the
controller

2. design the closed-loop port Hamiltonian behaviour and deduce the controller

Open questions:

1. choice of desired behaviour in closed-loop and relation with performance and
robustness

2. parametrization of the matching equations and solution
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Concluding remarks

• Energy based modelling: based on the universal concept of energy transfer.
• Provides physical interpretation to the models and the solutions.
• Passivity is naturally encountered when working with problems arising from

physical applications.
• Port-Hamiltonian control systems defines a class of non-linear passive systems

which encompasses a large class of physical applications.
• A modelling and control approach which is transversal to different (or combination

of) physical domains.
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