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Recent technological progresses and physical knowledges allow to go toward the use
of complex systems:

* Highly nonlinear.
* Involving numerous physical domains and possible heterogeneity.
+ With distributed parameters or organized in network.
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Recent technological progresses and physical knowledges allow to go toward the use
of complex systems:

+ Highly nonlinear.
* Involving numerous physical domains and possible heterogeneity.
+ With distributed parameters or organized in network.

New issue for system control theory

Modeling step is important — the physical properties can be advantageously used for
analysis, control or simulation purposes
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Example 1: lonic Polymer Metal Composite
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Figure 3. Beam-shapad IPMC actuator
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+ Electromechanical system.

+ 3 scales : Polymer-electrode interface, diffusion in the polymer, beam bending.
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Example 2: Nanotweezer for DNA manipulation
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Example 2: Nanotweezer for DNA manipulation » ;
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®
Example 3: Active skin for vibro-acoustic control
o - Ji‘ “'?W - ] Anechoic Termination
i'i.‘ I»:Id!h‘b' ';‘"_“'-’;C-"’_“”T'é: ’ //c:;«:;:::_:? D‘“W‘M'”"iz“ -
2-D case:
0 i i 9 o + 2-D wave equation
d [9] _ & ro - Non linear finite dimensional system
dt [ _div 0 0 é r : loudspeakers/microphones

+ Power preserving interconnection

Toward a more complex actuation system with elastodynamic components
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Port Hamiltonian framework

Port Hamiltonian systems

Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized
(2001) to distributed parameter systems.

= () — A 24 4 g x - R00) 32
X(t):{;—gaéxx))”’;ix()xn T {( ua,

+ Central role of the energy.
+ Additional information coming from the geometric structure.

* Multi-physic framework.
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Finite dimensional example ...
Let consider the mass spring damper system:

f

- = 3_@0
System —
k

x(t)

From the second Newton’s law:

Mx = —kx — fx + F
which is usually treated using the canonical state space representation:
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Finite dimensional example ...
Let consider the mass spring damper system:

f

F(t)
uce y(
System —
k

>

x(t)

From the second Newton’s law:

Mx = —kx — fx+ F

An alternative representation consist in choosing the energy variables (extensives
variables) as state variables i.e (x,p = Mx)

()5 D) ()

J—-R OxH B

with H(x, p) = kx® + - p?
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Finite dimensional example ...
Let consider the mass spring damper system:

f

- = Wﬂ
System —
k

x(t)

From the second Newton’s law:

Mx = —kx — fx+ F

Defining y s.t.:

X _ 0 1 L H(x, p) 0

(5) = (5 %) (o )+ ()
xH(x, p)

= 0 1

Y ( ) 8pH(xp)

dH oHTdx o6HT oH oHT

— =" Z==_ (J-R)=—+=— Bu<

G ax d - ox YU gty Busyu
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Infinite dimensional case

In what follows we focus on boundary controlled systems

In the general case, port Hamiltonian systems have been extended to distributed
parameter systems by the use of differential geometry:

* Energy variables ap and aq are p and q differential forms defined on an
n-dimensional manifold Z (with boundary 9.2).

*H:=[,HeR
+ Port Hamiltonian system is defined by:

(7&)-(5 ¥ (§)
(8)=Ce D)(B2)

The main advantage of such formulation is that it is not depending on coordinates,
applicable for nD systems.

In order to apply some functional analysis tools we focus on the 1D linear case.
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Example 1 : the vibrating string

Let consider a string of length [a, b]:

u(t,z)

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)

QPu(z,ty 1 9 (T(Z)Bu(z,t)>

or u(z) oz 0z

The structure of the model is not apparent. How to choose the boundary conditions ???
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Example 1 : the vibrating string

Let consider a string of length [a, b]:

u(t,z)

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)

Qu(z,ty 10 (T(Z)Bu(z,t))

or u(z)oz oz

The structure of the model is not apparent. How to choose the boundary conditions ???

Usually: x = [ u } — [ u } = ? 1 [ u } first order diff
X = . ol = 1.0 . ;

u u ) oz (T(z)g) 0 u
equation in time
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Vibrating string

Let choose as state variables the energy variables:

. in e — ou(z:t)
the strain e = 57

+ the elastic momentum p = p(2)v(z, t)
The total energy is given by : H(e, p) = U(e) + K(p)
+ U(e) is the elastic potential energy:

b 2 b
UGe) = /a %T(z)(auézz’t)) -/ STe(z 1

where T(z) denotes the elastic modulus.
* K(v) is the kinetic energy:

b b
K(p) = / Ju(2)v (2,07 = / %ﬁpﬁz, f)

where p(z) denotes the string mass.
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Example 1 : the vibrating string

From the conservation laws:

0 € 0 Ne \
a(p>+$(m)‘°

The vector of fluxes 3 may be expressed in term of the generating forces :

(%)= (55 (B) (& )
canonical generating

interdomain coupling forces

where v(z, t) is the velocity and o(z,t) = T(z2)e(z, t) the stress. Consequently

s()=-2(5 ) E)
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®
Example 1 : the vibrating string
From the conservation laws:
9 ( ¢ 9 [ N
— i £ =0
at(ﬁ)*f)z(l\fp)
The vector of fluxes 3 may be expressed in term of the generating forces :
()= (5 ) (B) (% )(Es)
Np -1 0 % -1 0 v(z,t)
N e —_—l

canonical generating
interdomain coupling forces

where v(z, t) is the velocity and o(z, t) = T(z)e(z, t) the stress.

9 SH 2 2
)( >@8u(z’t)—18u(z’t)ifc:cte
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Example 1: the vibrating string
Underlying structure:

2] € 0 % T(z) 0 €
a\p )"~ 2 9 0 5 p
oz I
f J = matrix e = driving
differential operator force

Hamiltonian operator 7 is skew-symmetric only for function with compact domain
strictly in Z :

b e; / / €4 _ ’ 71b
(e e )T e +( e e)Jg o )= [ere; + ez6]],
a
Power balance equation :
d - b (61 8e 4 oH 9P
aHEp) = <6a ot T op 01)dz
_ qb(smosr  sH b sH) gy [omsn]®
- a b 0z 6p Sp 9z be T Loe dp ],

If driving forces are zero at the boundary, the total energy is conserved, else there is a
flow of power at the boundary. Define two port boundary variables as follows :

(é%)—<%g>a,b
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Example 1: the vibrating string

The linear space D 3 (fy, b, &1, €2, f, €)
(1)=(2 §)(2)
fg - % 0 €2
(8)-(2)

(5] €2 ’

defines a Dirac structure:D = D with respect to the pairing

b b
/ e1fidz + / ecfhdz — faTea
a a

(—8 —6 fs,e9 | € D
a
ot sa’ 9 =9

Port Hamiltonian system
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Example 1: the vibrating string

The linear space D > (fy, o, €1, €2, fy, €5)
. fq _ 0 % e
fa 20 €
. fa — €4 |
ey & a,b

defines a Dirac structure:D = D with respect to the pairing

b b
/ eifidz + / exfodz — fgea
a a

Port Hamiltonian system
0., fa,ep9 | € D
Za, 1y,
8t K 6& K 8 8

dH _ s

gt~ 0%
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The lossless transmission line by

q(zt), @(zt)

i(tz)
e
v(tz)

Consider an ideal lossless transmission line with spatial domain Z = [a, b] C R. There
are two conserved variables:

- the charge on the interval Z: Q(, 5)() = f: q(t, z)dz where q(t, z) denotes the
charge density,

+ the flux on the interval Z : &, (1) = f: ¢(t, z)dz where ¢(t, z) denotes the flux

density.
Then q(t, z) and ¢(t, z) are the two extensive variables that will be used for the
modeling.
émto-St FEMTO-ST/UFC-ST 18/45
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The lossless transmission line

Let consider an infinitesimal piece of the transmission line:

q(zt), @(z,1)

i(tz)
v(t,z)

One can write the following 2 conservation laws in differential form:

+ conservation of charge:

d d
—q(t,z) = ——i 1
(0 2) =~ i(t.2) 1)

where i(t, z) denotes the current at z

+ conservation of flux: d P

—(t,2) = —— 2
qfha) = vt2) @

where v(t, z) denotes the voltage at z

femto-st FEMTO-ST/UFC-ST 19745
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The lossless transmission line

The electromagnetic properties gives the two closure equations for the functions i(t, z)

and v(t, z):
- the current is given by:
o(t,2)
L(2)
where L(z) denotes the distributed inductance of the line
- the voltage is given by:

i(t,z) =

®)

q(t, 2)
t,z) = 4
vt2) = o @
where C(z) denotes the distributed capacitance of the line
and the total electromagnetic energy of the system can be written:
(t, Z) ¢2(t, 2))
H= H(q, ¢)dz = d. 5
[ o= [ (G2 LD g ©
émtost 20/45
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The lossless transmission line

The preceding closure equations may be written in matrix form:

ittz)\ (o 1) [2Hed 6
v(t,z)) — \1 0) \ 8H4,9) ©)
3¢
where H(q, ¢) = fab H(q, ¢)dz and H(q, ¢) denotes the electromagnetic energy
density:

2 2
uae) - 1 (E02 , £0)

2\ C(2) L(z)

(R cEs & FEMTO-ST/UFC-ST 21/45




The lossless transmission line

Combining the conservation laws and the closure equations one obtains the

Hamiltonian system:
9H(q,9)
g (q> - J qu
ot \o $H(G.6)

where J is a formally skew symmetric differential operator defined as:

®)

©)

(R cEs & FEMTO-ST/UFC-ST
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Take two effort densities e(t, z) and €'(t, z) and compute their bracket with respect to
J:

b e
/ (eq,€4) T (e/q> dz
a ¢

—/b ege/ﬁ-e ge’ dz
a oz 00 9z
b J 7] 1
/; (e{7 §e¢+eg> Eeq) dz — [e{7 ey + € eq}o
b b
e
—/a (eg,eQ,)J(e;) dz — [e{, ey + € eq]a

We can see that it is skew symmetric for densities that vanish at the boundary!

@nto'St FEMTO-ST/UFC-ST 23/45




The lossless transmission line

The resulting port-Hamiltonian system is given by the telegraph equations

o)
(E)-(% #)()
— %57 0 |
together with the boundary variables

fa() = v(t,0), f§(1)
ea() = i(t0). €5

The resulting energy-balance is

o)
[8}

[

Q|

t

v(t,1)
—i(t, 1)

S = fTeg = ~i(t V(L 1) +i(1,0)v(1,0),

FEMTO-ST/UFC-ST
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Considered class of systems

We first consider lossless systems defined on 1-D spatial domain [a, b] by the PDE:

dx

E(t’ z) = JL(2)x(t, z), x(0,2) = x0(2),
where 7 is a formally skew symmetric differential operator and £(z) a coercive
operator.
For example

a(a)= (2 %) (0 2)0)

FEMTO-ST/UFC-ST 26/45
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Bond space

The system is defined by :
f=Je

and we first consider homogeneous boundary conditions.

e Let the space of flow variables, F, and the space of effort variables,&, be real Hilbert
spaces.

o Define the space of bond variables as B = F x £ endowed by the natural inner
product

bt Y = (1, 2Y (e e , b'=(f,e"),p?=(f¢e?)eB.
F £

In order to define a Dirac structure, let us moreover endow the bond space B with a
canonical symmetric pairing, i.e., a bilinear form defined as follows:

<b‘,b2>+ - <f1,rg,Fe2>f + <e‘,rf,gf2>£, b = (ﬂ,e‘) b= (fz,ez) €B.  (10)

FEMTO-ST/UFC-ST 28/45




Dirac structure

Denote by D+ the orthogonal subspace to D with respect to the symmetric pairing:

Dt =!{beB|(bb) =0foralbl eD}. (11)
+

Definition [Courant, 1990] :

A Dirac structure D on the bond space B = F x & is a subspace of B which is
maximally isotropic with respect to the canonical symmetric pairing, i.e.,

DL =1D. (12)

( ; ) € D < Power conservation

'_é:ntD'St FEMTO-ST/UFC-ST 29/45
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Port Hamiltonian Systems

PHS ~~ Definition based on Dirac structure and Hamiltonian function (total energy of
the system).

Definition :

Let B = € x F be the bound space defined above and consider the Dirac structure D
and the Hamilonian function #(x) with x the energy variables. Define the flow
variables, f € F as the time variation of the energy variables and the effort variables
e € & as the variational derivative of H(x). The system

ox OH
f = | —, — D
(7€) (6t’6x>€

is a Port Hamiltonian system with total energy #(x)

Let us now see how to include non homogeneous boundary conditions:

d bsuTd bsuT s 5 b
[P gy [P ey [ ()]
at a O0x dt a OX ox oX

a

(f,e) =T ey

femto-st FEMTO-ST/UFC-ST 30/45
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Extension to non homogeneous BC

~ We define the symmetric pairing (not depending on 7) and the port variables
associated with 7. ([Le Gorrec et al., 2005])

Let F = £ = L?((a, b); R") x R™N and define B = F x & with the following canonical
symmetric pairing :

(115,68} (12,75, €%, €5))
= <e17f2>L2 + <62, f1>L2 - <e137 f§> - (ega fg>’

Definition :

Let B = £ x F be the bound space defined above and consider the Dirac structure D
and the Hamilonian function #(x) with x the energy variables. Define the flow
variables, f € F as the time variation of the energy variables and its extension to the
boundary and the effort variables e € £ as the variational derivative of H(x) and its
extension to the boundary. The system

((1,15), (e, €9)) = ((%fa) , (%ea)) €Dy

is a Port Hamiltonian system with total energy #(x)

FEMTO-ST/UFC-ST 31/45




Parametrization of 1D differential operators

Parametrization ([Le Gorrec et al., 2005, Villegas, 2007]):

je—ZP(/ —(z) z€ab],

where e € HN((a, b); R™) and P(i), i = 0

. ,...,N,is anx nreal matrix with Py non
singular and P; = PJ(—1)*1. Let define
P Py oo Py
—Ps -P; -~ 0
Q= .
(=NN-1pPy 0 -0

Back to the Vibrating string

s(3)- (1)e (P 2)()
at\ p 1 0 )oz 0 3 P) Q=p
—_—— [—

f P,

FEMTO-ST/UFC-ST
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Port Variables

The port variables (ey, f5) € R™N associated with 7 are defined by :

e(b)

de{
( fa ) = Mext Wj(b) ’ Rext = i (Q 70)
€9 e(a) NN

N—1-
%(a)

where U is a unitary matrix such that:

UTZU:Zwich:( (,’ (’) )

BE B SCIENCES & FEMTO-ST/UFC-ST 33/45



Port Variables

Back to the Vibrating string

f P; e

The boundary port variables are defined by:

(5)=5(7 P)(8) -3 s

g(e): (01)@ ng)e
at\ p 1.0 0z P ) ,a="p

pb) _ pla)
by  wa)
b) — T(a)e(a)
a) + T(b)e(b)
pla) | p(b)
(@ ' u(b)

FEMTO-ST/UFC-ST
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Dirac structure

The subspace D of B defined as

. e(b)
Dy = ( fo )eeHN((a,b);lR"),Je—f,( ;g ):Rm :
€ 69_19(3)
is a Dirac structure, that means that D = D-+.
'.éfnto'St FEMTO-ST/UFC-ST 35/45
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Extension to systems with dissipation

Let us extend the previous results to systems defined by:

%(t, z) = (J — GrSGR)L(2)x(t, 2), x(0,2) = xo(2),

i

(2)=2(s)=(5 ¥)(a)

with ep = Sfp where S is a coercive operator
( ff ) €F, ( : ) € fand & = F = Lx((a,b),R") x La((a, b),R")
P P

Covers models of: beams, wave, plates, (with or without damping) and also systems of
diffusion/convection, chemical reactors ...

FEMTO-ST/UFC-ST 37/45




A simple example: the heat equation

1D Heat conduction is usually known on the following form:

2
aTéZt’ 0 _ D (T(z,1)

but is in fact derived from balance equation on the energy i.e:

d(eT(zt) _ 0 ( ,9T(z1)
ot __E(_ oz )

with ¢y constant and positive. This equation can be written:

QT(ZO) (0 ﬁ)(r(zr)> . A
ot A= = oz ’ with ep = —f,
( fo 2 0 ep P= e ®

In this case:

FEMTO-ST/UFC-ST
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Parametrization of the extended operator

Je is formally skew symmetric and can be parametrized by:
Je€ = z?’ﬁk‘ik‘é with P = (—1)'P]
ozk
In this case I~’N can be not full rank and the bilinear product is defined on quotient
space. The extended boundary port variables are defined by:

()-5(3 )% &)()

M spanning the column of @, @; = MTQM and Mq = (M™M)~"MT with

D

Py P, - Py

_ —Py —P; -~ 0
Q= , ,
(-N-1Py 0 - 0

(R cEs & FEMTO-ST/UFC-ST
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Back to the vibrating string

We consider now the vibrating string with structural damping (dissipation of the form
ks% (ﬁ) is given by a system of 2 conservation laws:

P B m 0 % s
()= (o) )=( 8 (2in) ) (%)

,u
The extended Hamiltonian operator is:
o 2 0
To = J  Gr \ _ P %z P _
e = —_Gx 0 = 57 +3; =
A 0 +Z 0
and

FEMTO-ST/UFC-ST 41/45



Boundary port variables

A matrix M spanning the columns of P; can be chosen as:

~ 0 1 0 v
Pp=( 1 0 1|, Mm=-1{o0
01 0 2\ 4

then 61:(? 8),andMQ:(g) ? 2)>and5:(Tij:R)

It thus follows that the port-variables become:

oo
SN—

i ) HOERAC)
( f ):L( e >( é(b) ): (Te+er)(b)—(Te+er)(a)
&y V2 / / é(a) (Te+ e;qB) Ez; + (BT(Z;L er) (b)
H iz
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Conclusion

In this first part we have:

+ shown that PDEs are obtained from balances equation on extensives variables
and can be related to power exchanges within the system through geometric
considerations,

+ in the 1D case defined:

+ the boundary port variables associated to the differential operator ;7
« Dirac structures on real Hilbert spaces

- parametrized all the boundary port variables for a large class of differential

operators.

We did not pay any attention on existence of solutions.

In the next part we focus on solutions and stability properties.

FEMTO-ST/UFC-ST

43/45



Thank you for your attention !
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