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In the first part of this course we focused on properties of Distributed Parameter
Systems i.e.
f=Je, ey, fy, s.t.

(f7 f3767 ea) € DJ

In Parts 2-3 we focus on solutions associated with the PDE:
« proving existence of solutions by using the semigroup theory
+ studying the conditions for asymptotic or exponential stability
+ designing stabilizing controllers
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

ox(t, z)
ot

= J 0xH(x(t,z)), with J skew sym. diff. operator
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

% = P % (L(2)x)(t, 2)) + (Po—Go)L(2)x(t, 2)
Py =P, Py=—P), Gy >0,x €R", z€ (ab), £(2) = L(2)" > 0. State space
X = Lp(a, b;R") with (x1, X2) 2 = (x1, Lx2) and the norm ||x{[|% = (x1,X1) .
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

ox o]

— = Pi— (L(2)x)(t, z Po—Go)L(2)x(t, z

o = Pigz (L@N(6.2) + (P=Go)£(2)x(1,2)

Py =P, Po=—P),Go>0,xcR" zc (ab), L(z)=L(z)" > 0. State space
X = Lx(a, b; R") with (x1, x2) £ = (X1, Lx2) and the norm || x; HZL =(X1,X1) -

The norm || - ||2£ is equivalent to the energy of the system

Applications

» Mechanical systems, magneto-electro-mechanical, chemical, etc...

- Some beam and wave equations, Maxwell equations, transmission lines, vibrating
strings, Saint-Venant equations, ...

-+ But also by using appropriate extension + closure relations: heat transmission,
diffusion systems, tubular reactors, etc...
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

% —p % (L(2)X)(1, 2)) + (Po—Go)L(2)x(1, 2)

Py =P, Po=—P),Go>0,xcR" zc (ab), L(z)=L(z)" > 0. State space
X = Lp(a, b;R") with (x1, X2) 2 = (x1, Lx2) and the norm ||x{[|% = (x1,X1) .

Boundary port variables

Let £x € H'(a, b; R"). Then the boundary port variables are the vectors
€a,cx; fo,cx € R”,

2]t T[] A s

Where

UTsU=%, ¥ = [‘,’ é] ¥ € Mon(R)
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Co Semi group

In finite dimension, linear systems can be described using first-order differential
equation:
{ X(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

with solutions expressed through:

t
x(t) = e*'x(0) + / =" Bu(r)dr
0
The idea of semigroups ([Curtain and Zwart(1995), Jacob and Zwart(2012)]) is to
generalize the notion of e/t to abstract systems defined on Hilbert space by:
).((Za t) = AX(Z) t)7 X(27 t) € D(A)7 X(Z7 0) = Xo

In what follows the semigroup associated to the generator A is noted T ().
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Co Semigroups

Definition of Cy Semi group

Let X be a Hilbert space. (T(t)):>o is called a strongly continuous semigroup (or Cp)
semigroup if the following Holds:

1. Forall t > 0, T(t) is a bounded linear operator on X, i.e., T(t) € L(X);
2. T(0)=0;

3. T(t+7)=T()T(r)forall t, 7 > 0;

4

. Forall xo € X, we have that || T(f)xo — Xo||x converges to zero, when t | 0 i.e.
t — T(t) is strongly continuous at zero.

Even if it has been defined for infinite dimensional systems it can be used in R". In this
case T(t) = e”!. Properties can be checked using

T(t)x = T2, (x, ¢n)én
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Co Semi group
Properties of Cy Semi group

A strongly continuous semigroup (T (t))¢>0 on X has the following properties:
1. || T(¢)|| is bounded on every finite sub-interval of [0, co);
2. The mapping t — T(t) is strongly continuous on the interval [0, co);
3. Forall x € X we have that I [ T(s)xds — x as t | 0;
4. Ifwo = inf (1log|| T(D)]l) then wo = fim (}log| T(1)]) < o0
5

. For every w > wg, 3 M,, such that for every t > 0 we have || T(t)|| < M,e“!.

Definition of infinitesimal generator

Let (T(t))¢>0 be a Cy-semigroup on the Hilbert space X. If the following limit exists

. T(t)XO — X0
Ir'f?) — = Xo € D(A)

we define A the infinitesimal generator of the strongly continuous semigroup by
Axg = lim 10X =X
t10 i
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Co Semi group

Theorem

Let (T(t))¢>0 be a strongly continuous semigroup on X with infinitesimal generator A.
Then the following results hold:

1. For xo € D(A) and t > 0 we have T(t)xo € D(A);
2. S (T(t)xo) = AT(t)xo = T(t)Axo for xo € D(A), t > 0;
3. Ais a closed linear operator;
It means that for x; € D(A) the function x(t) = T(t)xp is a solution of the abstract

differential equation:
x(t) = Ax(t), x(0) = xo M

Definition

A differentiable function x : [0, 00) — X is called classical solution of (1) if Vi > 0 we
have x(t) € D(A) and equation (1) is satisfied.

Lemma

Let A be the infinitesimal generator of Cy semigroup (T(t)):>o. Then for every
Xo(t) € D(A) the map t — T(t)x is the unique classical solution of (1).

femto.st
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Co Semi group

Definition

Let (T(t))¢>0 be a Cy semigroup on X. Then (T(t))¢>o is called a contraction
semigroup if || T(¢)|| < 1 and unitary semigroup if || T(t)|| = 1 for every t > 0.

Definition

A linear operator A : D(A) C X — X is called dissipative if

Re(Ax, x) < 0, x € D(A)

Lumer-Phillips Theorem

Let A be a linear operator with domain D(A) on X. Then A is the infinitesimal generator
of a contraction semigroup (T(t)):>o on X if and only if A is dissipative and
ran(l — A) = X

Theorem

Let A be a linear, densely defined and closed operator on X. Then A is the infinitesimal
generator of a contraction semigroup (T(t));>o on X if and only if A and A* are
dissipative.

ey

TE
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Port Hamiltonian systems

Port Hamiltonian systems

Let W be a n x 2n real matrix. If W has full rank and satisfies WX WT > 0
(WZWT = 0), then the operator Ax = Py(8/8z)(Lx) + (Py — Gp)Lx with domain

{fa’“(t)} € ker W}

D(A) = {Lx € H'(a, b;R™) o ()

generates a contraction semigroup(unitary semigroup) on X.

Sketch of proof
We use the property

(e,T€) + (Te,e)= (I &} )TZ( ;‘Z )

to prove that with D(.4) with rank and positivity condition the operator and its adjoint
are dissipative.
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Boundary control systems

We are interested in abstract control systems of the form:

« — /x(t), x(0) = xo,
P @

The control system 2 is a boundary control system if the following hold:
1. The operator A : D(A) — X with D(A) = D(</') N ker(#) and

o/ x = Ax for x € D(A)

is the infinitesimal generator of a Cy semigroup.

2. There exists an operator B € £(U, X) such that for all u € U we have Bu € D(«),
/B e L(U, X) and
PBBu=u, ue U

'.é!nto-St FEMTO-ST/UFC-ST 15/37
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n x 2n real matrix. If W has full rank and satisfies WX W T > 0, then the
system 2X = Ax with Ax = Py(8/0z)(Lx) + (Po — Go)Lx with domain

{fa’“(t)} € ker W}

D(A) = {Lx € H'(a, b;R™) o ()

and input

) = w | 2ex Q]

is a Boundary Control System on X.

Sketch of proof

The operator Ax = P1(9/0z)(Lx) + (Po — Go)Lx with domain D(.A) generates a
contraction semigroup on X. It remains to show that 3% such that ZBu = u, u € U
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems
[Le Gorrec et al.(2005)Le Gorrec, Zwart, and Maschke]

Let W be a full rank matrix of size n x 2n with [%] invertible and let P, 7 be given by

—1 - _
o (MM _[wswT wswT]
ww = W)W T \WEwT wswT|
Define the output of the system as the linear mapping C : £~ "H(a, b;R") — R”,

fa,cx(?)] _

y=CiE)=1 [ea,ﬁx(t)

Then for u € C2(0, o0; R¥), £x(0) € H'(a, b; R"), and u(0) = W [;f’;i((‘(’)))] the
following balance equation is satisfied:

19 @I = % [%gr Po i [%ﬂ —(GoLx(t), Lx(b)) < % [%HT Pw, i [%ﬂ :
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Specific cases

Using

We obtain for:

() =Ix@),
V:O{ u(t) ?( (1) + ea(1))
y(®) 2 (fa(t) — ea())

{ X(t) =Jx(t)
V=1 ut) =ht)
y(t) = —eo(t)

-

®
V)
Scattering system:
Boundary control system with
the associated semigroup
a contraction
FGIX@I2 = llu®)]1? = lly ()2

Impedance passive system
Boundary control system with
the associated semigroup
unltary

3 alIx@IR = ut)Ty(t)
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Back to the vibrating string

The PDE is given by:

Q( € )7 ( 0o -1 ) P ng)e
ot\ p -1 0 0z P .Q =P,
— — —_——

f P4 e

The boundary port variables are defined by:

a) b)
@ — u(b)
( fa ): L( Py —P )( e(b) ): 1| T(a)e(a) — T(b)e(b)
€ va\ ! l e(a) V2 | T(a)e(a) + T(b)e(b)
p@ o p(b)
w@ ' op(b)
By using the transformation
o 1t 1 0
|10 -1 1 0 Tey)
U= 10 0 1 st. U'XU=X
1 0 0 -1
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Back to the vibrating string

One can also choose:

oo
()= (&) -5| &
el

Impedance passive case:

1 ( T(a)(a) _ 1 (-5
VZI:}UZE(T(D)G(D)) and y = < i)

aH(1)

= yoTu
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Systems with dissipation

Let now consider systems with dissipation:

%(t, z) =(J — GrSGR)Lx(t,2), x(0,2) = xo(2),

i

(2)=2(a)=(% %)(a)

with ep = Sfp where S is a coercive operator

( ,; ) EI,( o ) €&and € = F = Ly((a b),R") x Lo((a, b), R")

(R cEs & FEMTO-ST/UFC-ST 21/37




Systems with dissipation

From geometrical point of view:
foe = Je€e

Je is formally skew symmetric and can be parametrized by:

~ ~ 9k _ - -
Jeb = ):Q’Pk@e with Py = (=) 1P

In this case l~9N is not full rank and the bilinear product is defined on quotient space.

The extended boundary port variables are defined by:

(%)-%(9 )% %) (&)

M spanning the column of @, @; = M7 QM and Mq = (M™ M)~ M with

P, P, .- Py

- —P; -P; -~ 0
Q= ,

(-N-1"Py 0 - 0
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BCS

Let W be full rank such that W= WT > 0,

dx
o (D) = Tex(D)

wo-w( )

is a boundary control system. The operator Aexc = Je With domain

o ={( 3 ) e (iGams ) I( 4 )eev) o

generates a contraction semigroup.

with input

f e'"tDSt FEMTO-ST/UFC-ST 23/37




Balance equation

Let W be full rank such that ( g ) invertible. Let define C : HN((a, b), R?") — R2™W
ast,
i [ feo(t)
ex(ty=Ww( 29 ) 4
x(t) =W (Lot @)
and the output as
y(t) = Cx(1), (%)
then for u € C2((0, c0); R2™), x(0) € HN((a, b), R2"), and Bx(0) = u(0) :
1d 2 1 T T ( u(t) )
= =_ 1)) Py i , 6
2dt”x(t)” 2( u(t)y y'(t) ) ww \ y(t) (6)
where ~
P _ wswT wzw’ )
wWw T\ WEwT  Wsw’
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Dissipative operator

Now the feedback is closed i.e.
f=Je—GrSGre,

The port variables become :
e(b)
(—SQ;;e)(b)

N 1
dzN 7 (b)
(60 )= | “atio
’ e(a)

(=S9ze)(a)

aN—1(_sgte)
—r—r—(a)

®)
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®
Dissipative operator
Consider the operator
A= (J — GrSGR)
with domain
D(A) = {e € H"((a,b); R") | Sgpe € HY((a, b);R"), ©)
91,6
( oo ) € kerW}. (10)

If W has full rank and satisfies W W7 > 0, then A generates a contraction semigroup.

(R cEs & FEMTO-ST/UFC-ST 26/37




®
BCS
Let W be full rank and satisfies W W7 > 0, then
ax N
— (0 =(7 —GaSaE)x(D) (1)
with input
9r,0(1) )
H=Bx(t)=W ’ 12
utt) = ey = w (o4l (12
is a boundary control system. Furthermore, the operator A = (J — GrSGg) with
domain
D(A) = {e € H((a, b);R") | SGre € H'((a, b);R"), (13)
91,6
’ ker W . 14
( o0 ) € ker } (14)

generates a contraction semigroup.
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®
Dissipative operator
M W . . . . .

Let W be full rank such that W ) invertible. Define the linear mapping
C : HN((a, b), R2") — R2"N gs,

— gy 9ro(l) )

Cx(t) =W ’ 1
X ( ge,a(t) (19

and the output as

y(t) = Cx(d), (16)

then for u € C?((0, c0); R?"™N), x(0) € HV((a, b), R?"), and Bx(0) = u(0) the following
balance equation is satisfied:

SO <3 (7O ) P (45 ) ()

where .
1 _( wswT wzwT’ )

wir =\ WrwT WrwT 18)
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Chemical reactor

Let consider a chemical tubular reactor z € [a, b] with reaction A — B

oc 0 ( oc
0z

— = —Ds— + vC) — ko C + Boundary conditions
ot 0z

where Dy > 0 and v is a positive constant.
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Chemical reactor

Let consider a chemical tubular reactor z € [a, b] with reaction A — B

oC 0 ( ocC

B = a2 Daa— + VC) — kC + Boundary conditions

where D, > 0 and v is a positive constant. By choosing

o 0 k 0 k D,
= —— = — [ S =
J 8z’ g Bz+ D;’ g 8z+ D;’ v
B B K
o oz 2z T\ D2 vC
t )7\ a_ /& 0 e
o9z [
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Boundary port variables

1 vC(a)

1 1 vC(b
0 ) ( Da-Z C(b) — v/DakC(b) )
0
1 Da-2 C(a) — vDakC(a)

/N
8L
o Q
N—
Il
‘_.
N

—

|

-

00 =
|

-

vC(a) — vO(b) + Da ( £:C(b) ~ £:C(a)) ~ VDK (C(b) — C(a))
9r0 ) _ a1 v S
7 v (C(b) + C(a))
Da (ZC(b) + 2C(a) — VDak (C(b) + C(a))
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Dankwert conditions

Usually the boundary conditions for tubular reactors are chosen as Dankwert Boundary

Conditions:

+ input total flow is imposed,

- output dispersive flow is equal to zero.
Dankwert conditions can be written as :

vC(t,a) — Da{;—f(t, a) = vCi(t), and

=

(5)
\/@

4/ fola

v

9.0
Je,6

)

=3

1 1

koDa
V v

Da*(t’ b) = 07

1—/%els

0z

)
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Conclusion

One can check that
wsw’ >0
iif
KDa _
"4

N =

It means that he system is a Boundary Control System with associated C, semigroup
unitary or a contraction if and only if the condition is satisfied.

Otherwise it is not a contraction semigroup.
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Conclusion

In this part we have:
- defined Cy semigroups, Boundary Control Systems,

- parametrized all the boundary port variables such that the system is a Boundary
Control System,

+ specified the impedance passive and the scattering cases,
+ generalized the result to systems with dissipation

In the next part we will be interested in stability of open/closed loop boundary control
systems.
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Thank you for your attention !
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