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In the first part of this course we focused on properties of Distributed Parameter
Systems i.e.

f = J e, e∂ , f∂ , s.t .

(f , f∂ , e, e∂) ∈ DJ

In Parts 2-3 we focus on solutions associated with the PDE:
• proving existence of solutions by using the semigroup theory
• studying the conditions for asymptotic or exponential stability
• designing stabilizing controllers
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)
∂x(t , z)

∂t
= J δxH(x(t , z)), with J skew sym. diff. operator

Considered class of PDEs (1D)
∂x
∂t

= P1
∂

∂z
(L(z)x)(t , z)) + (P0−G0)L(z)x(t , z)

P1 = P>1 , P0 = −P>0 , G0 ≥ 0, x ∈ Rn, z ∈ (a, b), L(z) = L(z)> > 0. State space
X = L2(a, b; Rn) with 〈x1, x2〉L = 〈x1,Lx2〉 and the norm ‖x1‖2

L = 〈x1, x1〉L.

The norm ‖ · ‖2
L is equivalent to the energy of the system

Applications

• Mechanical systems, magneto-electro-mechanical, chemical, etc...
• Some beam and wave equations, Maxwell equations, transmission lines, vibrating

strings, Saint-Venant equations, ...
• But also by using appropriate extension + closure relations: heat transmission,

diffusion systems, tubular reactors, etc...

Boundary port variables
Let Lx ∈ H1(a, b;Rn). Then the boundary port variables are the vectors
e∂,Lx , f∂,Lx ∈ Rn,[

f∂,Lx
e∂,Lx

]
= U

1
√

2

[
P1 −P1
I I

] [
(Lx)(b)
(Lx)(a)

]
= R

[
(Lx)(b)
(Lx)(a)

]
.

Where

UT ΣU = Σ, Σ =

[
0 I
I 0

]
, Σ ∈ M2n(R)
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C0 Semi group

In finite dimension, linear systems can be described using first-order differential
equation: {

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

with solutions expressed through:

x(t) = eAt x(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ

The idea of semigroups ([Curtain and Zwart(1995), Jacob and Zwart(2012)]) is to
generalize the notion of eAt to abstract systems defined on Hilbert space by:

ẋ(z, t) = Ax(z, t), x(z, t) ∈ D(A), x(z, 0) = x0

In what follows the semigroup associated to the generator A is noted T (t).
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C0 Semigroups

Definition of C0 Semi group

Let X be a Hilbert space. (T (t))t≥0 is called a strongly continuous semigroup (or C0)
semigroup if the following Holds:

1. For all t ≥ 0, T (t) is a bounded linear operator on X , i.e., T (t) ∈ L(X);

2. T (0) = 0;

3. T (t + τ) = T (t)T (τ) for all t , τ ≥ 0;

4. For all x0 ∈ X , we have that ‖T (t)x0 − x0‖X converges to zero, when t ↓ 0 i.e.
t 7→ T (t) is strongly continuous at zero.

Even if it has been defined for infinite dimensional systems it can be used in Rn. In this
case T (t) = eAt . Properties can be checked using

T (t)x = Σ∞n=1eλn t 〈x , φn〉φn
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C0 Semi group

Properties of C0 Semi group

A strongly continuous semigroup (T (t))t≥0 on X has the following properties:

1. ‖T (t)‖ is bounded on every finite sub-interval of [0,∞);

2. The mapping t 7→ T (t) is strongly continuous on the interval [0,∞);

3. For all x ∈ X we have that 1
t

∫ t
0 T (s)xds → x as t ↓ 0;

4. If ω0 = inf
(

1
t log‖T (t)‖

)
then ω0 = lim

(
1
t log‖T (t)‖

)
<∞

5. For every ω > ω0, ∃ Mω such that for every t ≥ 0 we have ‖T (t)‖ ≤ Mωeωt .

Definition of infinitesimal generator

Let (T (t))t≥0 be a C0-semigroup on the Hilbert space X . If the following limit exists

lim
t↓0

T (t)x0 − x0

t
⇒ x0 ∈ D(A)

we define A the infinitesimal generator of the strongly continuous semigroup by
Ax0 = lim

t↓0
T (t)x0−x0

t
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C0 Semi group

Theorem

Let (T (t))t≥0 be a strongly continuous semigroup on X with infinitesimal generator A.
Then the following results hold:

1. For x0 ∈ D(A) and t ≥ 0 we have T (t)x0 ∈ D(A);

2. d
dt (T (t)x0) = AT (t)x0 = T (t)Ax0 for x0 ∈ D(A), t ≥ 0;

3. A is a closed linear operator;

It means that for x0 ∈ D(A) the function x(t) = T (t)x0 is a solution of the abstract
differential equation:

ẋ(t) = Ax(t), x(0) = x0 (1)

Definition

A differentiable function x : [0,∞)→ X is called classical solution of (1) if ∀t ≥ 0 we
have x(t) ∈ D(A) and equation (1) is satisfied.

Lemma

Let A be the infinitesimal generator of C0 semigroup (T (t))t≥0. Then for every
x0(t) ∈ D(A) the map t 7→ T (t)x0 is the unique classical solution of (1).
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C0 Semi group

Definition

Let (T (t))t≥0 be a C0 semigroup on X . Then (T (t))t≥0 is called a contraction
semigroup if ‖T (t)‖ ≤ 1 and unitary semigroup if ‖T (t)‖ = 1 for every t ≥ 0.

Definition

A linear operator A : D(A) ⊂ X → X is called dissipative if

Re〈Ax , x〉 ≤ 0, x ∈ D(A)

Lumer-Phillips Theorem

Let A be a linear operator with domain D(A) on X . Then A is the infinitesimal generator
of a contraction semigroup (T (t))t≥0 on X if and only if A is dissipative and
ran(I − A) = X

Theorem

Let A be a linear, densely defined and closed operator on X . Then A is the infinitesimal
generator of a contraction semigroup (T (t))t≥0 on X if and only if A and A∗ are
dissipative.
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Port Hamiltonian systems

Port Hamiltonian systems

Let W be a n × 2n real matrix. If W has full rank and satisfies W ΣW> ≥ 0
(W ΣW> = 0), then the operator Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx (t)
e∂,Lx (t)

]
∈ ker W

}
generates a contraction semigroup(unitary semigroup) on X .

Sketch of proof

We use the property

〈e,J e〉+ 〈J e, e〉 =
(

f T
∂ eT

∂

)T
Σ

(
f∂
e∂

)
to prove that with D(A) with rank and positivity condition the operator and its adjoint
are dissipative.
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Boundary control systems

We are interested in abstract control systems of the form:

ẋ = A x(t), x(0) = x0,
Bx(t) = u(t), (2)

Definition

The control system 2 is a boundary control system if the following hold:

1. The operator A : D(A)→ X with D(A) = D(A ) ∩ ker(B) and

A x = Ax for x ∈ D(A)

is the infinitesimal generator of a C0 semigroup.

2. There exists an operator B ∈ L(U,X) such that for all u ∈ U we have Bu ∈ D(A ),
A B ∈ L(U,X) and

BBu = u, u ∈ U
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n × 2n real matrix. If W has full rank and satisfies W ΣW> ≥ 0, then the
system ∂x

∂t = Ax with Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx (t)
e∂,Lx (t)

]
∈ ker W

}
and input

u(t) = W
[

f∂,Lx (t)
e∂,Lx (t)

]
is a Boundary Control System on X .

Sketch of proof

The operator Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain D(A) generates a
contraction semigroup on X . It remains to show that ∃B such that BBu = u, u ∈ U
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems
[Le Gorrec et al.(2005)Le Gorrec, Zwart, and Maschke]

Let W̃ be a full rank matrix of size n× 2n with
[

W
W̃

]
invertible and let PW ,W̃ be given by

PW ,W̃ =

([
W
W̃

]
Σ

[
W
W̃

]>)−1

=

[
W ΣW> W ΣW̃>

W̃ ΣW> W̃ ΣW̃>

]−1

.

Define the output of the system as the linear mapping C : L−1H1(a, b;Rn)→ Rn,

y = Cx(t) := W̃
[

f∂,Lx (t)
e∂,Lx (t)

]
.

Then for u ∈ C2(0,∞;Rk ), Lx(0) ∈ H1(a, b;Rn), and u(0) = W
[

f∂,Lx (0)

e∂,Lx (0)

]
the

following balance equation is satisfied:

1
2

d
dt
‖x(t)‖2

L =
1
2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
−〈G0Lx(t),Lx(t)〉 ≤

1
2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
.
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Specific cases

Using
W = S (I + V , I − V )

W̃ = S̃ (I − V ,−I − V )

We obtain for:

V = 0


ẋ(t) = J x(t),
u(t) = 1

2 (f∂(t) + e∂(t))

y(t) = 1
2 (f∂(t)− e∂(t))

=⇒

Scattering system:
Boundary control system with
the associated semigroup
a contraction
1
2

d
dt ‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2.

V = I

 ẋ(t) = J x(t)
u(t) = f∂(t)
y(t) = −e∂(t)

=⇒

Impedance passive system
Boundary control system with
the associated semigroup
unitary
1
2

d
dt ‖x(t)‖2 = u(t)T y(t)
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Back to the vibrating string

The PDE is given by:

∂

∂t

(
ε
p

)
︸ ︷︷ ︸ =

(
0 −1
−1 0

)
︸ ︷︷ ︸ ∂

∂z

(
T (z)ε

1
µ(z)

p

)
︸ ︷︷ ︸

f P1 e

,Q = P1

The boundary port variables are defined by:

(
f∂
e∂

)
=

1
√

2

(
P1 −P1
I I

)(
e(b)
e(a)

)
=

1
√

2


p(a)
µ(a)
− p(b)
µ(b)

T (a)ε(a)− T (b)ε(b)
T (a)ε(a) + T (b)ε(b)

p(a)
µ(a)

+ p(b)
µ(b)


By using the transformation

U =


0 1 1 0
0 −1 1 0
1 0 0 1
1 0 0 −1

 s.t. UT ΣU = Σ
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Back to the vibrating string

One can also choose:

(
f∂
e∂

)
=

1
√

2
U
(

P1 −P1
I I

)(
e(b)
e(a)

)
=

1
√

2


T (a)ε(a)
T (b)ε(b)

p(a)
µ(a)

− p(b)
µ(b)



Impedance passive case:

V = I ⇒ u =
1
√

2

(
T (a)ε(a)
T (b)ε(b)

)
and y =

1
√

2

(
− p(a)
µ(a)

p(b)
µ(b)

)

dH(t)
dt

= y(t)T u(t)
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Systems with dissipation

Let now consider systems with dissipation:

dx
dt

(t , z) = (J − GRSG∗R)Lx(t , z), x(0, z) = x0(z),

m(
f
fp

)
= Je

(
e
ep

)
=

(
J GR
−G∗R 0

)(
e
ep

)
with ep = Sfp where S is a coercive operator(

f
fp

)
∈ F ,

(
e
ep

)
∈ E and E = F = L2((a, b),Rn)× L2((a, b),Rn)
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Systems with dissipation
From geometrical point of view:

fe = Jeee

Je is formally skew symmetric and can be parametrized by:

Jeẽ = ΣN
1 P̃k

∂k

∂zk
ẽ with P̃k = (−1)k+1P̃T

k

In this case P̃N is not full rank and the bilinear product is defined on quotient space.
The extended boundary port variables are defined by:(

f̃∂
ẽ∂

)
=

1
√

2

(
Q̃1 −Q̃1
I I

)(
MQ 0
0 MQ

)(
ẽ(b)
ẽ(a)

)
M spanning the column of Q̃, Q̃1 = MT Q̃M and MQ = (MT M)−1MT with

Q̃ =


P̃1 P̃2 · · · P̃N

−P̃2 −P̃3 · · · 0
... · · ·

. . .
...

(−1)N−1P̃N 0 · · · 0


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BCS

Let W be full rank such that W ΣW T ≥ 0,

dx
dt

(t) = Jex(t)

with input

u(t) = W
(

f̃∂
ẽ∂

)
is a boundary control system. The operator Aext = Je with domain

D(Aext) =

{(
ẽ
ẽr

)
∈
(

HN ((a, b),Rn)
HN ((a, b),Rn)

) ∣∣∣( f̃∂
ẽ∂

)
∈ ker W

}
, (3)

generates a contraction semigroup.
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Balance equation

Let W̃ be full rank such that
(

W
W̃

)
invertible. Let define C : HN ((a, b),R2n)→ R2nN

ast,

Cx(t) := W̃
(

fe,∂(t)
ee,∂(t)

)
(4)

and the output as
y(t) = Cx(t), (5)

then for u ∈ C2((0,∞);R2nN ), x(0) ∈ HN ((a, b),R2n), and Bx(0) = u(0) :

1
2

d
dt
‖x(t)‖2 =

1
2

(
uT (t) yT (t)

)
PW ,W̃

(
u(t)
y(t)

)
, (6)

where

P−1
W ,W̃

=

(
W ΣW T W ΣW̃ T

W̃ ΣW T W̃ ΣW̃ T

)
. (7)
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Dissipative operator

Now the feedback is closed i.e.

f = J e − GRSG∗Re,

The port variables become :

(
gf ,∂
ge,∂

)
= Rext



e(b)
(−SG∗Re)(b)

...
dN−1e
dzN−1 (b)

dN−1(−SG∗R e)

dzN−1 (b)

e(a)
(−SG∗Re)(a)

...
dN−1(−SG∗R e)

dzN−1 (a)



, (8)

FEMTO-ST/UFC-ST 25 / 37



Dissipative operator

Consider the operator
A = (J − GRSG∗R)

with domain

D(A) =
{

e ∈ HN ((a, b);Rn)
∣∣∣ SG∗Re ∈ HN ((a, b);Rn), (9)(

gf ,∂
ge,∂

)
∈ ker W

}
. (10)

If W has full rank and satisfies W ΣW T ≥ 0, then A generates a contraction semigroup.
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BCS

Let W be full rank and satisfies W ΣW T ≥ 0, then

dx
dt

(t) = (J − GRSG∗R)x(t) (11)

with input

u(t) = Bx(t) = W
(

gf ,∂(t)
ge,∂(t)

)
(12)

is a boundary control system. Furthermore, the operator A = (J − GRSG∗R) with
domain

D(A) =
{

e ∈ HN ((a, b);Rn)
∣∣∣ SG∗Re ∈ HN ((a, b);Rn), (13)(

gf ,∂
ge,∂

)
∈ ker W

}
. (14)

generates a contraction semigroup.
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Dissipative operator

Let W̃ be full rank such that
(

W
W̃

)
invertible. Define the linear mapping

C : HN ((a, b),R2n)→ R2nN as,

Cx(t) := W̃
(

gf ,∂(t)
ge,∂(t)

)
(15)

and the output as
y(t) = Cx(t), (16)

then for u ∈ C2((0,∞);R2nN ), x(0) ∈ HN ((a, b),R2n), and Bx(0) = u(0) the following
balance equation is satisfied:

1
2

d
dt
‖x(t)‖2 ≤

1
2

(
uT (t) yT (t)

)
PW ,W̃

(
u(t)
y(t)

)
, (17)

where

P−1
W ,W̃

=

(
W ΣW T W ΣW̃ T

W̃ ΣW T W̃ ΣW̃ T

)
. (18)
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Chemical reactor

A

B

A B

B

Let consider a chemical tubular reactor z ∈ [a, b] with reaction A→ B

∂C
∂t

= −
∂

∂z

(
−Da

∂C
∂z

+ vC
)
− k0C + Boundary conditions

where Da > 0 and v is a positive constant.
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Chemical reactor

Let consider a chemical tubular reactor z ∈ [a, b] with reaction A→ B

∂C
∂t

= −
∂

∂z

(
−Da

∂C
∂z

+ vC
)
− kC + Boundary conditions

where Da > 0 and v is a positive constant. By choosing

J = −
∂

∂z
, G =

∂

∂z
+

√
k

Da
, G∗ = −

∂

∂z
+

√
k

Da
, S =

Da

v

(
∂C
∂t
f

)
=

 − ∂
∂z

∂
∂z +

√
k

Da
∂
∂z −

√
k

Da
0

( vC
e

)
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Boundary port variables

(
gf ,∂
ge,∂

)
=

1
√

2


−1 1 1 −1
1 0 −1 0
1 0 1 0
0 1 0 1




vC(b)

Da
∂
∂z C(b)−

√
DakC(b)

vC(a)

Da
∂
∂z C(a)−

√
DakC(a)


Then

(
gf ,∂
ge,∂

)
=

1
√

2


vC(a)− vC(b) + Da

(
∂
∂z C(b)− ∂

∂z C(a)
)
−
√

Dak (C(b)− C(a))

v (C(b)− C(a))
v (C(b) + C(a))

Da

(
∂
∂z C(b) + ∂

∂z C(a)
)
−
√

Dak (C(b) + C(a))


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Dankwert conditions

Usually the boundary conditions for tubular reactors are chosen as Dankwert Boundary
Conditions:

• input total flow is imposed,
• output dispersive flow is equal to zero.

Dankwert conditions can be written as :

vC(t , a)− Da
∂C
∂z

(t , a) = vCin(t), and Da
∂C
∂z

(t , b) = 0, (19)

⇔

(
vCin

0

)
= W

(
gf ,∂
ge,∂

)

W =

√
2

2

 1
√

k0Da
v 1−

√
k0Da

v −1

1 1 +
√

k0Da
v

√
k0Da

v 1

 ,
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Conclusion

One can check that
W ΣW T ≥ 0

iif √
kDa

v
≤

1
2

It means that he system is a Boundary Control System with associated C0 semigroup
unitary or a contraction if and only if the condition is satisfied.

Otherwise it is not a contraction semigroup.
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Conclusion

In this part we have:
• defined C0 semigroups, Boundary Control Systems,
• parametrized all the boundary port variables such that the system is a Boundary

Control System,
• specified the impedance passive and the scattering cases,
• generalized the result to systems with dissipation

In the next part we will be interested in stability of open/closed loop boundary control
systems.
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Thank you for your attention !
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