

Control of distributed port-Hamiltonian systems

Part2: Boundary control systems

Hector Ramirez, Yann Le Gorrec

FEMTO-ST UMR CNRS 6174, UFC, ENSMM, Besançon, France.

March 2015

Outline

- 1. Introduction
- 2. Considered PDEs
- 3. C₀ Semigroups
- 4. PHS and generator of C_0 semigroups
- 5. Boundary control systems

In the first part of this course we focused on properties of Distributed Parameter Systems $\it i.e.$

$$f = \mathcal{J}e, e_{\partial}, f_{\partial}, s.t.$$

 $(f, f_{\partial}, e, e_{\partial}) \in \mathcal{D}_{\mathcal{J}}$

In Parts 2-3 we focus on solutions associated with the PDE:

- proving existence of solutions by using the semigroup theory
- · studying the conditions for asymptotic or exponential stability
- designing stabilizing controllers

Outline

- 1. Introduction
- 2. Considered PDEs
- 3. C₀ Semigroups
- 4. PHS and generator of C_0 semigroups
- 5. Boundary control systems

Considered class of PDEs (1D)

$$rac{\partial x(t,z)}{\partial t}=\mathcal{J}\;\delta_{X}\mathcal{H}(x(t,z)),\;\; ext{with}\;\; \mathcal{J}\; ext{skew sym. diff. operator}$$

$$\frac{\partial x}{\partial t} = P_1 \frac{\partial}{\partial z} \left(\mathcal{L}(z) x \right) (t, z) + (P_0 - \mathbf{G_0}) \mathcal{L}(z) x (t, z)$$

$$P_1 = P_1^{\top}$$
, $P_0 = -P_0^{\top}$, $G_0 \ge 0$, $x \in \mathbb{R}^n$, $z \in (a,b)$, $\mathcal{L}(z) = \mathcal{L}(z)^{\top} > 0$. State space $X = L_2(a,b;\mathbb{R}^n)$ with $\langle x_1,x_2 \rangle_{\mathcal{L}} = \langle x_1,\mathcal{L}x_2 \rangle$ and the norm $\|x_1\|_{\mathcal{L}}^2 = \langle x_1,x_1 \rangle_{\mathcal{L}}$.

Considered class of PDEs (1D)

$$\frac{\partial x}{\partial t} = P_1 \frac{\partial}{\partial z} \left(\mathcal{L}(z) x \right) (t, z) + (P_0 - \mathbf{G_0}) \mathcal{L}(z) x (t, z)$$

$$P_1 = P_1^{\top}$$
, $P_0 = -P_0^{\top}$, $G_0 \ge 0$, $x \in \mathbb{R}^n$, $z \in (a,b)$, $\mathcal{L}(z) = \mathcal{L}(z)^{\top} > 0$. State space $X = L_2(a,b;\mathbb{R}^n)$ with $\langle x_1, x_2 \rangle_{\mathcal{L}} = \langle x_1, \mathcal{L} x_2 \rangle$ and the norm $\|x_1\|_{\mathcal{L}}^2 = \langle x_1, x_1 \rangle_{\mathcal{L}}$.

The norm $\|\cdot\|_C^2$ is equivalent to the energy of the system

Applications

- Mechanical systems, magneto-electro-mechanical, chemical, etc...
- Some beam and wave equations, Maxwell equations, transmission lines, vibrating strings, Saint-Venant equations, ...
- But also by using appropriate extension + closure relations: heat transmission, diffusion systems, tubular reactors, etc...

Considered class of PDEs (1D)

$$\frac{\partial x}{\partial t} = P_1 \frac{\partial}{\partial z} \left(\mathcal{L}(z) x \right) (t, z) + (P_0 - G_0) \mathcal{L}(z) x (t, z)$$

 $P_1 = P_1^{\top}, P_0 = -P_0^{\top}, G_0 \ge 0, x \in \mathbb{R}^n, z \in (a, b), \mathcal{L}(z) = \mathcal{L}(z)^{\top} > 0$. State space $X = L_2(a, b; \mathbb{R}^n)$ with $\langle x_1, x_2 \rangle_{\mathcal{L}} = \langle x_1, \mathcal{L}x_2 \rangle$ and the norm $||x_1||_{\mathcal{L}}^2 = \langle x_1, x_1 \rangle_{\mathcal{L}}$.

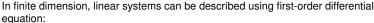
Boundary port variables

Let $\mathcal{L}x \in H^1(a, b; \mathbb{R}^n)$. Then the boundary port variables are the vectors $e_{\partial, \mathcal{L}x}, f_{\partial, \mathcal{L}x} \in \mathbb{R}^n$,

$$\begin{bmatrix} f_{\partial,\mathcal{L}x} \\ e_{\partial,\mathcal{L}x} \end{bmatrix} = U \frac{1}{\sqrt{2}} \begin{bmatrix} P_1 & -P_1 \\ I & I \end{bmatrix} \begin{bmatrix} (\mathcal{L}x)(b) \\ (\mathcal{L}x)(a) \end{bmatrix} = R \begin{bmatrix} (\mathcal{L}x)(b) \\ (\mathcal{L}x)(a) \end{bmatrix}.$$

Where

$$U^T \Sigma U = \Sigma, \quad \Sigma = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}, \qquad \Sigma \in M_{2n}(\mathbb{R})$$



$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

with solutions expressed through:

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

The idea of semigroups ([Curtain and Zwart(1995), Jacob and Zwart(2012)]) is to generalize the notion of e^{At} to abstract systems defined on Hilbert space by:

$$\dot{x}(z,t) = Ax(z,t), \ x(z,t) \in D(A), \ x(z,0) = x_0$$

In what follows the semigroup associated to the generator A is noted T(t).

Outline

- 1. Introduction
- 2. Considered PDEs
- 3. C₀ Semigroups
- 4. PHS and generator of C₀ semigroups
- 5. Boundary control systems

Definition of C_0 Semi group

Let X be a Hilbert space. $(T(t))_{t\geq 0}$ is called a strongly continuous semigroup (or C_0) semigroup if the following Holds:

- 1. For all $t \ge 0$, T(t) is a bounded linear operator on X, *i.e.*, $T(t) \in \mathcal{L}(X)$;
- 2. T(0) = 0;
- 3. $T(t+\tau) = T(t)T(\tau)$ for all $t, \tau \geq 0$;
- 4. For all $x_0 \in X$, we have that $||T(t)x_0 x_0||_X$ converges to zero, when $t \downarrow 0$ *i.e.* $t \mapsto T(t)$ is strongly continuous at zero.

Even if it has been defined for infinite dimensional systems it can be used in \mathbb{R}^n . In this case $T(t) = e^{At}$. Properties can be checked using

$$T(t)x = \sum_{n=1}^{\infty} e^{\lambda_n t} \langle x, \phi_n \rangle \phi_n$$

Properties of C_0 Semi group

A strongly continuous semigroup $(T(t))_{t>0}$ on X has the following properties:

- 1. ||T(t)|| is bounded on every finite sub-interval of $[0, \infty)$;
- 2. The mapping $t \mapsto T(t)$ is strongly continuous on the interval $[0, \infty)$;
- 3. For all $x \in X$ we have that $\frac{1}{t} \int_0^t T(s) x ds \to x$ as $t \downarrow 0$;
- 4. If $\omega_0=\inf\left(\frac{1}{t}log\|T(t)\|\right)$ then $\omega_0=\lim\left(\frac{1}{t}log\|T(t)\|\right)<\infty$
- 5. For every $\omega > \omega_0$, $\exists M_\omega$ such that for every $t \ge 0$ we have $||T(t)|| \le M_\omega e^{\omega t}$.

Definition of infinitesimal generator

Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup on the Hilbert space X. If the following limit exists

$$\lim_{t\downarrow 0}\frac{T(t)x_0-x_0}{t}\Rightarrow x_0\in D(A)$$

we define A the infinitesimal generator of the strongly continuous semigroup by $Ax_0 = \lim_{t \to 0} \frac{T(t)x_0 - x_0}{t}$

Theorem

Let $(T(t))_{t\geq 0}$ be a strongly continuous semigroup on X with infinitesimal generator A. Then the following results hold:

- 1. For $x_0 \in D(A)$ and $t \ge 0$ we have $T(t)x_0 \in D(A)$;
- 2. $\frac{d}{dt}(T(t)x_0) = AT(t)x_0 = T(t)Ax_0 \text{ for } x_0 \in D(A), t \ge 0;$
- 3. A is a closed linear operator;

It means that for $x_0 \in D(A)$ the function $x(t) = T(t)x_0$ is a solution of the abstract differential equation:

$$\dot{x}(t) = Ax(t), \ x(0) = x_0$$
 (1)

Definition

A differentiable function $x : [0, \infty) \to X$ is called classical solution of (1) if $\forall t \ge 0$ we have $x(t) \in D(A)$ and equation (1) is satisfied.

Lemma

Let A be the infinitesimal generator of C_0 semigroup $(T(t))_{t\geq 0}$. Then for every $x_0(t)\in D(A)$ the map $t\mapsto T(t)x_0$ is the unique classical solution of (1).

Definition

Let $(T(t))_{t\geq 0}$ be a C_0 semigroup on X. Then $(T(t))_{t\geq 0}$ is called a contraction semigroup if $\|T(t)\|\leq 1$ and unitary semigroup if $\|T(t)\|=1$ for every $t\geq 0$.

Definition

A linear operator $A: D(A) \subset X \to X$ is called dissipative if

$$Re\langle Ax, x \rangle \leq 0, \ x \in D(A)$$

Lumer-Phillips Theorem

Let A be a linear operator with domain D(A) on X. Then A is the infinitesimal generator of a contraction semigroup $(T(t))_{t\geq 0}$ on X if and only if A is dissipative and ran(I-A)=X

Theorem

Let A be a linear, densely defined and closed operator on X. Then A is the infinitesimal generator of a contraction semigroup $(T(t))_{t\geq 0}$ on X if and only if A and A^* are dissipative.

Outline

- 1. Introduction
- 2. Considered PDEs
- 3. C₀ Semigroups
- 4. PHS and generator of C₀ semigroups
- 5. Boundary control systems

Port Hamiltonian systems

Let W be a $n \times 2n$ real matrix. If W has full rank and satisfies $W\Sigma W^{\top} \ge 0$ $(W\Sigma W^{\top} = 0)$, then the operator $\mathcal{A}x = P_1(\partial/\partial z)(\mathcal{L}x) + (P_0 - G_0)\mathcal{L}x$ with domain

$$D(\mathcal{A}) = \left\{ \mathcal{L}x \in H^1(a,b;\mathbb{R}^n) \mid \begin{bmatrix} f_{\partial,\mathcal{L}x}(t) \\ e_{\partial,\mathcal{L}x}(t) \end{bmatrix} \in \ker W \right\}$$

generates a contraction semigroup(unitary semigroup) on X.

Sketch of proof

We use the property

$$\langle \mathbf{e}, \mathcal{J} \mathbf{e} \rangle + \langle \mathcal{J} \mathbf{e}, \mathbf{e} \rangle = \left(\begin{array}{cc} \mathbf{f}_{\partial}^{\mathsf{T}} & \mathbf{e}_{\partial}^{\mathsf{T}} \end{array} \right)^{\mathsf{T}} \boldsymbol{\Sigma} \left(\begin{array}{c} \mathbf{f}_{\partial} \\ \mathbf{e}_{\partial} \end{array} \right)$$

to prove that with D(A) with rank and positivity condition the operator and its adjoint are dissipative.

Outline

- 1. Introduction
- 2. Considered PDEs
- 3. C₀ Semigroups
- 4. PHS and generator of C_0 semigroups
- 5. Boundary control systems

Boundary control systems

We are interested in abstract control systems of the form:

$$\dot{\mathbf{x}} = \mathcal{A}\mathbf{x}(t), \quad \mathbf{x}(0) = \mathbf{x}_0, \\
\mathcal{B}\mathbf{x}(t) = \mathbf{u}(t),$$
(2)

Definition

The control system 2 is a boundary control system if the following hold:

1. The operator $A: D(A) \to X$ with $D(A) = D(\mathscr{A}) \cap \ker(\mathscr{B})$ and

$$\mathscr{A}x = Ax \text{ for } x \in D(A)$$

is the infinitesimal generator of a C_0 semigroup.

2. There exists an operator $B \in \mathcal{L}(U, X)$ such that for all $u \in U$ we have $Bu \in \mathcal{D}(\mathscr{A})$, $\mathscr{A}B \in \mathcal{L}(U, X)$ and

$$\mathscr{B}Bu=u,\ u\in U$$

Let W be a $n \times 2n$ real matrix. If W has full rank and satisfies $W\Sigma W^{\top} \geq 0$, then the system $\frac{\partial x}{\partial t} = \mathcal{A}x$ with $\mathcal{A}x = P_1(\partial/\partial z)(\mathcal{L}x) + (P_0 - G_0)\mathcal{L}x$ with domain

$$D(\mathcal{A}) = \left\{ \mathcal{L}x \in H^1(a,b;\mathbb{R}^n) \mid \begin{bmatrix} f_{\partial,\mathcal{L}x}(t) \\ e_{\partial,\mathcal{L}x}(t) \end{bmatrix} \in \ker W \right\}$$

and input

$$u(t) = W \begin{bmatrix} f_{\partial, \mathcal{L}X}(t) \\ e_{\partial, \mathcal{L}X}(t) \end{bmatrix}$$

is a Boundary Control System on X.

Sketch of proof

The operator $\mathcal{A}x = P_1(\partial/\partial z)(\mathcal{L}x) + (P_0 - G_0)\mathcal{L}x$ with domain $D(\mathcal{A})$ generates a contraction semigroup on X. It remains to show that $\exists \mathcal{B}$ such that $\mathscr{B}Bu = u, \ u \in U$

Boundary controlled port Hamiltonian systems [Le Gorrec et al.(2005)Le Gorrec, Zwart, and Maschke]

Let \tilde{W} be a full rank matrix of size $n \times 2n$ with $\begin{bmatrix} w \\ \tilde{w} \end{bmatrix}$ invertible and let $P_{W,\tilde{W}}$ be given by

$$P_{W,\tilde{W}} = \left(\begin{bmatrix} W \\ \tilde{W} \end{bmatrix} \Sigma \begin{bmatrix} W \\ \tilde{W} \end{bmatrix}^{\top} \right)^{-1} = \begin{bmatrix} W \Sigma W^{\top} & W \Sigma \tilde{W}^{\top} \\ \tilde{W} \Sigma W^{\top} & \tilde{W} \Sigma \tilde{W}^{\top} \end{bmatrix}^{-1}.$$

Define the output of the system as the linear mapping $\mathcal{C}:\mathcal{L}^{-1}H^1(a,b;\mathbb{R}^n)\to\mathbb{R}^n$,

$$y = \mathcal{C}x(t) := \tilde{W} \begin{bmatrix} f_{\partial,\mathcal{L}x}(t) \\ e_{\partial,\mathcal{L}x}(t) \end{bmatrix}.$$

Then for $u \in C^2(0,\infty;\mathbb{R}^k)$, $\mathcal{L}x(0) \in H^1(a,b;\mathbb{R}^n)$, and $u(0) = W\left[\begin{smallmatrix} f_{\partial,\mathcal{L}x}(0) \\ e_{\partial,\mathcal{L}x}(0) \end{smallmatrix}\right]$ the following balance equation is satisfied:

$$\frac{1}{2}\frac{d}{dt}\|x(t)\|_{\mathcal{L}}^2 = \frac{1}{2}\begin{bmatrix}u(t)\\y(t)\end{bmatrix}^\top P_{W,\tilde{W}}\begin{bmatrix}u(t)\\y(t)\end{bmatrix} - \langle G_0\mathcal{L}x(t),\mathcal{L}x(t)\rangle \leq \frac{1}{2}\begin{bmatrix}u(t)\\y(t)\end{bmatrix}^\top P_{W,\tilde{W}}\begin{bmatrix}u(t)\\y(t)\end{bmatrix}.$$

Specific cases

Usina

$$W = S(I+V, I-V)$$

$$\tilde{W} = \tilde{S}(I-V, -I-V)$$

We obtain for:

$$V = 0 \begin{cases} \dot{x}(t) = \mathcal{J}x(t), & \text{Boundary control system } v \\ u(t) = \frac{1}{2}(f_{\partial}(t) + e_{\partial}(t)) & \Longrightarrow & \text{the associated semigroup} \\ y(t) = \frac{1}{2}(f_{\partial}(t) - e_{\partial}(t)) & \text{a contraction} \end{cases}$$

$$V = I \begin{cases} \dot{x}(t) &= \mathcal{J}x(t) \\ u(t) &= f_{\partial}(t) \\ v(t) &= -e_{\partial}(t) \end{cases} \Longrightarrow$$

Scattering system:

Boundary control system with $\frac{1}{2} \frac{d}{dt} ||x(t)||^2 = ||u(t)||^2 - ||y(t)||^2.$

Impedance passive system

Boundary control system with the associated semigroup unitary $\frac{1}{2} \frac{d}{dt} ||x(t)||^2 = u(t)^T y(t)$

Back to the vibrating string

The PDE is given by:

$$\underbrace{\frac{\partial}{\partial t} \left(\begin{array}{c} \epsilon \\ p \end{array} \right)}_{f} = \underbrace{ \left(\begin{array}{c} 0 & -1 \\ -1 & 0 \end{array} \right)}_{P_{1}} \quad \underbrace{\frac{\partial}{\partial z}}_{\partial z} \quad \underbrace{ \left(\begin{array}{c} T(z)\epsilon \\ \frac{1}{\mu(z)}p \end{array} \right)}_{e} \ , Q = P_{1}$$

The boundary port variables are defined by:

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} P_1 & -P_1 \\ I & I \end{pmatrix} \begin{pmatrix} e(b) \\ e(a) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{p(a)}{\mu(a)} - \frac{p(b)}{\mu(b)} \\ T(a)\epsilon(a) - T(b)\epsilon(b) \\ T(a)\epsilon(a) + T(b)\epsilon(b) \\ \frac{p(a)}{\mu(a)} + \frac{p(b)}{\mu(b)} \end{pmatrix}$$

By using the transformation

$$U = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \quad \text{s.t.} \quad U^T \Sigma U = \Sigma$$

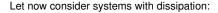
Back to the vibrating string

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = \frac{1}{\sqrt{2}} U \begin{pmatrix} P_{1} & -P_{1} \\ I & I \end{pmatrix} \begin{pmatrix} e(b) \\ e(a) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} T(a) \epsilon(a) \\ T(b) \epsilon(b) \\ \frac{p(a)}{\mu(a)} \\ -\frac{p(b)}{\mu(b)} \end{pmatrix}$$

Impedance passive case:

$$V = I \Rightarrow u = \frac{1}{\sqrt{2}} \begin{pmatrix} T(a)\epsilon(a) \\ T(b)\epsilon(b) \end{pmatrix} \text{ and } y = \frac{1}{\sqrt{2}} \begin{pmatrix} -\frac{p(a)}{\mu(a)} \\ \frac{p(b)}{\mu(b)} \end{pmatrix}$$
$$\frac{dH(t)}{dt} = y(t)^{T} u(t)$$

Systems with dissipation



$$\frac{dx}{dt}(t,z) = (\mathcal{J} - \mathcal{G}_R \mathcal{S} \mathcal{G}_R^*) \mathcal{L} x(t,z), \ x(0,z) = x_0(z),$$

$$\left(\begin{array}{c} f \\ f_p \end{array}\right) = \mathcal{J}_e \left(\begin{array}{c} e \\ e_p \end{array}\right) = \left(\begin{array}{cc} \mathcal{J} & \mathcal{G}_R \\ -\mathcal{G}_R^* & 0 \end{array}\right) \left(\begin{array}{c} e \\ e_p \end{array}\right)$$

with $e_p = Sf_p$ where S is a coercive operator

$$\left(\begin{array}{c}f\\f_{p}\end{array}\right)\in\mathcal{F},\left(\begin{array}{c}e\\e_{p}\end{array}\right)\in\mathcal{E}\text{ and }\mathcal{E}=\mathcal{F}=L_{2}((a,b),\mathbb{R}^{n})\times L_{2}((a,b),\mathbb{R}^{n})$$

Systems with dissipation

From geometrical point of view:

$$f_e = \mathcal{J}_e e_e$$

 \mathcal{J}_e is formally skew symmetric and can be parametrized by:

$$\mathcal{J}_{e}\widetilde{e} = \Sigma_{1}^{N}\widetilde{P}_{k} \frac{\partial^{k}}{\partial z^{k}}\widetilde{e} \text{ with } \widetilde{P}_{k} = (-1)^{k+1}\widetilde{P}_{k}^{T}$$

In this case \widetilde{P}_N is not full rank and the bilinear product is defined on quotient space. The extended boundary port variables are defined by:

$$\left(\begin{array}{c} \widetilde{f}_{\partial} \\ \widetilde{e}_{\partial} \end{array}\right) = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} \widetilde{Q}_1 & -\widetilde{Q}_1 \\ I & I \end{array}\right) \left(\begin{array}{cc} M_Q & 0 \\ 0 & M_Q \end{array}\right) \left(\begin{array}{c} \widetilde{e}(b) \\ \widetilde{e}(a) \end{array}\right)$$

M spanning the column of \widetilde{Q} , $\widetilde{Q}_1 = M^T \widetilde{Q} M$ and $M_Q = (M^T M)^{-1} M^T$ with

$$\widetilde{Q} = \begin{pmatrix} \widetilde{P}_1 & \widetilde{P}_2 & \cdots & \widetilde{P}_N \\ -\widetilde{P}_2 & -\widetilde{P}_3 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ (-1)^{N-1}\widetilde{P}_N & 0 & \cdots & 0 \end{pmatrix}$$

BCS

Let W be full rank such that $W\Sigma W^T > 0$,

$$\frac{dx}{dt}(t) = \mathcal{J}_{e}x(t)$$

with input

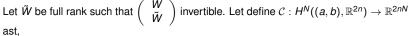
$$u(t) = W\left(\begin{array}{c} \widetilde{f}_{\partial} \\ \widetilde{e}_{\partial} \end{array}\right)$$

is a **boundary control system**. The operator $A_{\text{ext}} = \mathcal{J}_e$ with domain

$$D(A_{\mathrm{ext}}) = \left\{ \left(\begin{array}{c} \widetilde{e} \\ \widetilde{e}_r \end{array} \right) \in \left(\begin{array}{c} H^N((a,b),\mathbb{R}^n) \\ H^N((a,b),\mathbb{R}^n) \end{array} \right) \mid \left(\begin{array}{c} \widetilde{f}_{\partial} \\ \widetilde{e}_{\partial} \end{array} \right) \in \ker W \right\}, \tag{3}$$

generates a contraction semigroup.

Balance equation



$$Cx(t) := \tilde{W} \begin{pmatrix} f_{e,\partial}(t) \\ e_{e,\partial}(t) \end{pmatrix} \tag{4}$$

and the output as

$$y(t) = \mathcal{C}x(t), \tag{5}$$

then for $u \in C^2((0,\infty); \mathbb{R}^{2nN}), x(0) \in H^N((a,b), \mathbb{R}^{2n}), \text{ and } \mathcal{B}x(0) = u(0)$:

$$\frac{1}{2} \frac{d}{dt} \|x(t)\|^2 = \frac{1}{2} \left(u^T(t) \quad y^T(t) \right) P_{W,\tilde{W}} \left(y(t) \right), \tag{6}$$

where

$$P_{W,\bar{W}}^{-1} = \begin{pmatrix} W\Sigma W^{T} & W\Sigma W^{T} \\ \tilde{W}\Sigma W^{T} & \tilde{W}\Sigma \tilde{W}^{T} \end{pmatrix}. \tag{7}$$

Dissipative operator

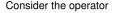
Now the feedback is closed i.e.

$$f = \mathcal{J}e - \mathcal{G}_R \mathcal{S} \mathcal{G}_R^* e,$$

The port variables become:

$$\begin{pmatrix} g_{f,\partial} \\ g_{e,\partial} \end{pmatrix} = R_{\text{ext}} \begin{pmatrix} e(b) \\ (-S\mathcal{G}_{R}^{*}e)(b) \\ \vdots \\ \frac{d^{N-1}e}{dz^{N-1}}(b) \\ \frac{d^{N-1}(-S\mathcal{G}_{R}^{*}e)}{dz^{N-1}}(b) \\ e(a) \\ (-S\mathcal{G}_{R}^{*}e)(a) \\ \vdots \\ \frac{d^{N-1}(-S\mathcal{G}_{R}^{*}e)}{dz^{N-1}}(a) \end{pmatrix}, \tag{8}$$

Dissipative operator



$$A = (\mathcal{J} - \mathcal{G}_R \mathcal{S} \mathcal{G}_R^*)$$

with domain

$$D(A) = \left\{ e \in H^{N}((a,b); \mathbb{R}^{n}) \mid S\mathcal{G}_{R}^{*}e \in H^{N}((a,b); \mathbb{R}^{n}), \right. \tag{9}$$

$$\begin{pmatrix} g_{f,\partial} \\ g_{e,\partial} \end{pmatrix} \in \ker W \right\}.$$
(10)

If W has full rank and satisfies $W\Sigma W^T \ge 0$, then A generates a contraction semigroup.

BCS

Let W be full rank and satisfies $W\Sigma W^T > 0$, then

$$\frac{dx}{dt}(t) = (\mathcal{J} - \mathcal{G}_R S \mathcal{G}_R^*) x(t)$$
 (11)

with input

$$u(t) = \mathcal{B}x(t) = W\begin{pmatrix} g_{f,\partial}(t) \\ g_{e,\partial}(t) \end{pmatrix}$$
(12)

is a boundary control system. Furthermore, the operator $A=(\mathcal{J}-\mathcal{G}_RS\mathcal{G}_R^*)$ with domain

$$D(A) = \left\{ e \in H^{N}((a,b); \mathbb{R}^{n}) \mid S\mathcal{G}_{R}^{*}e \in H^{N}((a,b); \mathbb{R}^{n}), \right. \tag{13}$$

$$\begin{pmatrix} g_{f,\partial} \\ g_{e,\partial} \end{pmatrix} \in \ker W \right\}.$$
(14)

generates a contraction semigroup.

Dissipative operator

Let \tilde{W} be full rank such that $\begin{pmatrix} W \\ \tilde{W} \end{pmatrix}$ invertible. Define the linear mapping $\mathcal{C}: H^N((a,b),\mathbb{R}^{2n}) \to \mathbb{R}^{2nN}$ as,

$$Cx(t) := \tilde{W} \begin{pmatrix} g_{f,\partial}(t) \\ g_{e,\partial}(t) \end{pmatrix}$$
 (15)

and the output as

$$y(t) = \mathcal{C}x(t), \tag{16}$$

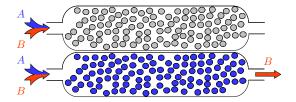
then for $u \in C^2((0,\infty); \mathbb{R}^{2nN})$, $x(0) \in H^N((a,b), \mathbb{R}^{2n})$, and $\mathcal{B}x(0) = u(0)$ the following balance equation is satisfied:

$$\frac{1}{2} \frac{d}{dt} \|x(t)\|^2 \le \frac{1}{2} \left(u^T(t) \quad y^T(t) \right) P_{W,\tilde{W}} \left(\begin{array}{c} u(t) \\ y(t) \end{array} \right), \tag{17}$$

where

$$P_{W,\tilde{W}}^{-1} = \begin{pmatrix} W\Sigma W^T & W\Sigma \tilde{W}^T \\ \tilde{W}\Sigma W^T & \tilde{W}\Sigma \tilde{W}^T \end{pmatrix}. \tag{18}$$

Chemical reactor

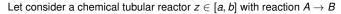


Let consider a chemical tubular reactor $z \in [a, b]$ with reaction $A \rightarrow B$

$$\frac{\partial C}{\partial t} = -\frac{\partial}{\partial z} \left(-D_a \frac{\partial C}{\partial z} + vC \right) - k_0 C + \text{Boundary conditions}$$

where $D_a > 0$ and v is a positive constant.

Chemical reactor



$$\frac{\partial C}{\partial t} = -\frac{\partial}{\partial z} \left(-D_a \frac{\partial C}{\partial z} + vC \right) - kC + \text{Boundary conditions}$$

where $D_a > 0$ and v is a positive constant. By choosing

$$\begin{split} \mathcal{J} &= -\frac{\partial}{\partial z}, \;\; \mathcal{G} = \frac{\partial}{\partial z} + \sqrt{\frac{k}{D_a}}, \;\; \mathcal{G}^* = -\frac{\partial}{\partial z} + \sqrt{\frac{k}{D_a}}, \;\; \mathcal{S} = \frac{D_a}{v} \\ \left(\begin{array}{c} \frac{\partial \mathcal{C}}{\partial t} \\ f \end{array} \right) &= \left(\begin{array}{cc} -\frac{\partial}{\partial z} & \frac{\partial}{\partial z} + \sqrt{\frac{k}{D_a}} \\ \frac{\partial}{\partial z} - \sqrt{\frac{k}{D_a}} & 0 \end{array} \right) \left(\begin{array}{c} v\mathcal{C} \\ e \end{array} \right) \end{split}$$

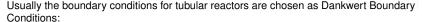
Boundary port variables

$$\left(\begin{array}{c} g_{f,\partial} \\ g_{e,\partial} \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{cccc} -1 & 1 & 1 & -1 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} vC(b) \\ D_a \frac{\partial}{\partial z} C(b) - \sqrt{D_a k} C(b) \\ vC(a) \\ D_a \frac{\partial}{\partial z} C(a) - \sqrt{D_a k} C(a) \end{array} \right)$$

Then

$$\left(\begin{array}{c} g_{f,\partial} \\ g_{e,\partial} \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} vC(a) - vC(b) + D_a \left(\frac{\partial}{\partial z} C(b) - \frac{\partial}{\partial z} C(a) \right) - \sqrt{D_a k} \left(C(b) - C(a) \right) \\ v \left(C(b) - C(a) \right) \\ v \left(C(b) + C(a) \right) \\ D_a \left(\frac{\partial}{\partial z} C(b) + \frac{\partial}{\partial z} C(a) \right) - \sqrt{D_a k} \left(C(b) + C(a) \right) \end{array} \right)$$

Dankwert conditions



- · input total flow is imposed,
- output dispersive flow is equal to zero.

Dankwert conditions can be written as:

$$vC(t,a) - D_a \frac{\partial C}{\partial z}(t,a) = vC_{in}(t), \text{ and } D_a \frac{\partial C}{\partial z}(t,b) = 0,$$
 (19)

 \Leftrightarrow

Conclusion

One can check that

$$W\Sigma W^T \geq 0$$

iif

$$\sqrt{\frac{kD_a}{v}} \le \frac{1}{2}$$

It means that he system is a Boundary Control System with associated C_0 semigroup unitary or a contraction if and only if the condition is satisfied.

Otherwise it is not a contraction semigroup.

Outline

- 1. Introduction
- 2. Considered PDEs
- 3. C₀ Semigroups
- 4. PHS and generator of C_0 semigroups
- 5. Boundary control systems

Conclusion

In this part we have:

- defined C₀ semigroups, Boundary Control Systems,
- parametrized all the boundary port variables such that the system is a Boundary Control System,
- · specified the impedance passive and the scattering cases,
- · generalized the result to systems with dissipation

In the next part we will be interested in stability of open/closed loop boundary control systems.

Thank you for your attention!

R.F. Curtain and H.J. Zwart.

An introduction to infinite-dimensional linear systems theory.

Texts in applied mathematics. Springer-Verlag, New York, USA, 1995.

B. Jacob and H.J. Zwart.

Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, volume 223 of Operator Theory: Advances and Applications. Birkhäuser, Basel, Switzerland, 2012.

Y. Le Gorrec, H. Zwart, and B. Maschke.

Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM Journal on Control and Optimization, 44(5):1864–1892, 2005.

