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Aim of this part

We are now interested in stability of BCS. We consider:
• Asymptotic stability
• Exponential stability

in the case of
• Static boundary feedback
• Dynamic boundary feedback

we will also see how the design dynamic controllers in order to shape the closed loop
energy function by using structural invariants.
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Stability

We are interested in (exponential) stability of abstract systems of the form

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0

i.e. when the solution tends to zero (exponentially) fast as t → 0.

Definition

The C0 semigroup (T (t))t≥0 on X is exponentially stable if there exist positives
constants M and α such that

‖T (t)‖ ≤ Me−αt for t ≥ 0
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Stability

Theorem

Suppose that A is the infinitesimal generator of a C0 semigroup (T (t))t≥0 on X . The
following are equivalent

1. (T (t))t≥0 is exponentially stable

2. There exists a positive operator P ∈ L(X) such that

〈Ax ,Px〉+ 〈Px ,Ax〉 = −〈x , x〉 for all x ∈ D(A) (1)

3. There exists a positive operator P ∈ L(X) such that

〈Ax ,Px〉+ 〈Px ,Ax〉 ≤ −〈x , x〉 for all x ∈ D(A)

Equation (1) is called Lyapunov equation.
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Stability

When there exists a positive operator P ∈ L(X) such that

〈Ax ,Px〉+ 〈Px ,Ax〉 ≤ 0 for all x ∈ D(A)

one has to prove that there exists an invariant set and that this invariant set reduces to
zero.
Lassale’s invariant principle
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

∂x
∂t

= P1
∂

∂z
(L(z)x)(t , z)) + (P0−G0)L(z)x(t , z)

P1 = P>1 , P0 = −P>0 , G0 ≥ 0, x ∈ Rn, z ∈ (a, b), L(z) = L(z)> > 0. State space
X = L2(a, b; Rn) with 〈x1, x2〉L = 〈x1,Lx2〉 and the norm ‖x1‖2

L = 〈x1, x1〉L.

The norm ‖ · ‖2
L is equivalent to the energy of the system

Boundary port variables

Let Lx ∈ H1(a, b;Rn). Then the boundary port variables are the vectors
e∂,Lx , f∂,Lx ∈ Rn,[

f∂,Lx
e∂,Lx

]
= U

1√
2

[
P1 −P1
I I

] [
(Lx)(b)
(Lx)(a)

]
= R

[
(Lx)(b)
(Lx)(a)

]
.

Where

UT ΣU = Σ, Σ =

[
0 I
I 0

]
, Σ ∈ M2n(R)
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n × 2n real matrix. If W has full rank and satisfies W ΣW> ≥ 0, then the
system ∂x

∂t = P1
∂
∂z (L(z)x)(t , z)) + (P0 − G0)L(z)x(t , z)with input

u(t) = W
[

f∂,Lx (t)
e∂,Lx (t)

]
is a BCS on X . The operator Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx (t)
e∂,Lx (t)

]
∈ ker W

}
generates a contraction semigroup on X .
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W̃ be a full rank matrix of size n× 2n with
[

W
W̃

]
invertible and let PW ,W̃ be given by

PW ,W̃ =

([
W
W̃

]
Σ

[
W
W̃

]>)−1

=

[
W ΣW> W ΣW̃>

W̃ ΣW> W̃ ΣW̃>

]−1

.

Define the output of the system as the linear mapping C : L−1H1(a, b;Rn)→ Rn,

y = Cx(t) := W̃
[

f∂,Lx (t)
e∂,Lx (t)

]
.

Then for u ∈ C2(0,∞;Rk ), Lx(0) ∈ H1(a, b;Rn), and u(0) = W
[

f∂,Lx (0)

e∂,Lx (0)

]
the

following balance equation is satisfied:

1
2

d
dt
‖x(t)‖2

L =
1
2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
−〈G0Lx(t),Lx(t)〉 ≤ 1

2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
.
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Closed loop control with static feedback

Impedance passive case

As it has been pointed out in [Villegas(2007)], if the matrices W and W̃ are selected
such that PW ,W̃ =

[ 0 I
I 0

]
= Σ, then the BCS fulfills

1
2

d
dt
‖x(t)‖2

L ≤ u>(t)y(t).

!

"! #! $!

#%!$%!

&!'!

!!

!

ABOUT TWEEZERS

Y. LE GORREC

DNA is first approximated by a spring+damper system. The tweezer is approx-
imated by a linear second order system. The parametric identification of the open
tweezers (without trapped DNA) leads to:

• Mass: M = 360 . 10−9Kg
• Stiffness: k = 24.9 n/m
• Friction coefficient: ν = 10−4 N.s/m

The resonance frequency and the damping factor of the open tweezers are given by:

fR =
1

2π

�
k

M
− ν2

4M2
, Q =

√
kM

ν

After DNA bundle trapping

fR−DNA =
1

2π

�
k + kDNA

M
− (ν + νDNA)2

4M2
, QDNA =

�
(k + kDNA)M

(ν + νDNA)

From experiments we have:

fR = 2477, 75Hz , Q = 59.75 , fR−DNA = 2479, 5Hz , QDNA = 56, 80

Then
4π2f2

R−DNA =
k + kDNA

M
− (k + kDNA)

4MQ2
DNA

Then

kDNA = 4Mπ2f2
R−DNA

�
1 − 1

4Q2
DNA

�−1

− k

and

νDNA =

�
(k + kDNA)M

QDNA
− ν

ẋ = JLx

u = W

�
f∂
e∂

�
, y = �W

�
f∂
e∂

�

1


ẋ = JLx

r =
(

W + αW̃
)( f∂

e∂

)
y = W̃

(
f∂
e∂

)
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Closed loop control with static feedback

Asymptotic stability

Assume that (λ−A)−1 : X → X is a compact operator for λ > 0. Then the system
described by: 

ẋ = JLx

r =
(

W + αW̃
)( f∂

e∂

)
y = W̃

(
f∂

e∂

)
with r = 0 and α > 0 is asymptotically stable.

Sketch of poof

We use the energy as Lyapunov function and Lassale’s invariant principle. First the
closed loop system is a BCS with infinitesimal generator of a contraction semigroup as
soon as α > 0. If u = 0, dH

dt = −yTαy
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Exponential stability

Lemma

Consider a BCS such that Wcl ΣW T
cl ≥ 0 with u(t) = 0, for all t ≥ 0. Then the energy of

the system E(t) = (1/2)‖x(t)‖2
L satisfies for τ large enough

E(τ) ≤ c(τ)

∫ τ

0
‖(Lx)(t , b)‖2

Rdt , and E(τ) ≤ c(τ)

∫ τ

0
‖(Lx)(t , a)‖2

Rdt ,

Theorem : exponential stability.

BCS is exponentially stable if the energy of the system satisfies

(dE/dt) ≤ −k‖(Lx)(t , b)‖2
R or (dE/dt) ≤ −k‖(Lx)(t , a)‖2

R

where k is a positive real constant.
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Example : Timoshenko beam

As state variables we choose

x1 = ∂w
∂z − φ : shear displacement,

x2 = ρ ∂w
∂t : transverse momentum distribution,

x3 = ∂φ
∂z : angular displacement,

x4 = Iρ ∂φ∂t : angular momentum distribution.

Then the model of the beam can be rewritten as

∂

∂t


x1
x2
x3
x4

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

P1

∂

∂z


K x1
1
ρ

x2

EI x3
1
Iρ

x4

+


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


︸ ︷︷ ︸

P0


K x1
1
ρ

x2

EI x3
1
Iρ

x4


︸ ︷︷ ︸

Lx

.
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Velocity feedback

One can define the boundary port variables:

(
f∂
e∂

)
=

1√
2

[
P1 −P1
I I

](
(Lx)(b)
(Lx)(a)

)
=

1√
2



(ρ−1x2)(b)− (ρ−1x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1
ρ x4)(b)− (I−1

ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(Kx1)(b) + (Kx1)(a)

(ρ−1x2)(b) + (ρ−1x2)(a)
(EIx3)(b) + (EIx3)(a)

(I−1
ρ x4)(b) + (I−1

ρ x4)(a)


.

(2)

Let us consider stabilization by applying velocity feedback i.e. following BC:

1
ρ(a)

x2(a) = 0, 1
Iρ(a)

x4(a) = 0,

K (b)x1(b, t) = −α1
1
ρ(b)

x2(b, t), EI(b)x3(b, t) = −α2
1

Iρ(b)
x4(b)
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Velocity feedback

Input mapping:

Wcl =
1√
2


−1 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 1
α1 1 0 0 1 α1 0 0

0 0 α2 1 0 0 1 α2


then

Wcl ΣW T
cl = 2


0 0 0 0
0 0 0 0
0 0 α1 0
0 0 0 α2

 ≥ 0

As output we can choose

y =


−K (a)x1(a)
−(EI)(a)x3(a)

1
ρ(b)

x2(b)
1

Iρ(b)
x4(b)

 , with W̃ =
1√
2


0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

 .
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Velocity feedback

Then

P−1
W ,W̃

=

[
2α I

I 0

]
,PW ,W̃ =

[
0 I
I −2α

]
Energy balance:

d
dt

E(t) =
d
dt
‖x(t)‖2

L = 〈u(t), y(t)〉U − 〈αy(t), y(t)〉R

where
〈αy(t), y(t)〉R = α1|(ρ−1x2)(b, t)|2 + α2|(I−1x4)(b, t)|2

Then

‖ (Lx(b)) ‖2
R = |(kx1)(b)|2 + |(ρ−1x2)(b)|2 + |(EIx3)(b)|2 + |(I−1

ρ x4)(b)|2
= (α2

1 + 1)|(ρ−1x2)(b, t)|2 + (α2
2 + 1)|(I−1

ρ x4)(b)|2
≤ κ〈αy(t), y(t)〉R = −κ d

dt E(t)

⇒ Stability
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Dynamic boundary feedback
Consider a strictly passive linear finite dimensional system

v̇ = Acv + Bcuc , yc = Ccv + Dcuc .

with storage function Ec(t) = 1
2 〈v(t)Qcv(t)〉Rm , Qc = Q>c > 0 ∈ Rm × Rm.

Theorem [Villegas(2007)]

Let the open-loop BCS satisfy 1
2

d
dt ‖x(t)‖2

L = u(t)y(t). Consider a LTI strictly passive finite
dimensional system with storage function Ec(t) = 1

2 〈v(t),Qcv(t)〉Rm . Then the power preserving
feedback interconnection

u = r − yc , y = uc ,

with r ∈ Rn the new input of the system is a BCS on the extended state space x̃ ∈ X̃ = X × V with
inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L + 〈v1,Qcv2〉V . Furthermore, the operator Ae defined by

Ae x̃ =

[
JL 0
BcC Ac

] [
x
v

]
, D(Ae) =

{[
x
v

]
∈
[

X
V

] ∣∣∣Lx ∈ HN (a, b; Rn),

 f∂,Lx
e∂,Lx

v

 ∈ ker W̃D

}

where
W̃D =

[
(W + DcW̃ Cc)

]
generates a contraction semigroup on X̃ .
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Dynamic boundary feedback!

!"

#"$"

%&"
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ABOUT TWEEZERS 2





ẋ = J Lx�
u
y

�
=

�
W

W̃

� �
f∂,Lx(t)
e∂,Lx(t)

�

Define the output of the system as the linear mapping

C : L−1H1(a, b; Rn) → Rn, y = Cx(t) := W̃

�
f∂,Lx(t)
e∂,Lx(t)

�
.

Then for u ∈ C2(0,∞; Rk), Lx(0) ∈ H1(a, b; Rn), and

u(0) = W
�

f∂,Lx(0)

e∂,Lx(0)

�
the following balance equation is

satisfied:

1

2

d

dt
�x(t)�2

L =
1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
− �G0Lx(t), Lx(t)�

≤ 1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
.

(3)

The matrix PW,W̃ is defined only when
�

W
W̃

�
is invertible.

Notice that in the absence of some internal dissipation
(G0 = 0) the system only exchanges energy with the
environment through the boundaries since the input and
output act on the boundary of the spatial domain. Finally
we remark that the balance equation (3) may be rewritten
as:

1

2

d

dt
�x(t)�2

L ≤
�
(Lx)(t, b)
(Lx)(t, a)

�� �
P1 0
0 −P1

� �
(Lx)(t, b)
(Lx)(t, a)

�
(4)

Remark 3. As it has been pointed out in ?, if the matrices
W and W̃ are selected such that PW,W̃ = [ 0 I

I 0 ] = Σ, then

the BCS fulfils 1
2

d
dt�x(t)�2

L ≤ u�(t)y(t).

3. DYNAMIC BOUNDARY CONTROL

In what follows we consider the feedback loop of Figure ??
where the infinite dimensional system is is an impedance
passive system as described in Theorem 2. This intercon-
nection is power preserving and satisfies:

u = r − yc, uc = y

Furthermore we consider that the controller satisfies As-
sumption 4

Assumption 4. We consider a controllable, observable and
exponentially stable port Hamiltonian controller on the
form:

v̇ = (Jc − Rc)Qcv + Bcuc,
yc = BT

c Qcv
(5)

with state space v ∈ V = Rm, set of input values
uc ∈ Uc = Rn and set of output values yc ∈ Y = Rn.
The set Uc of admissible inputs consists of all Uc-valued
piecewise continuous functions defined on R. Jc, Rc , Qc

and Bc are constant real matrices of dimension m × m,
m × m, m × m, and m × n, respectively with Jc = −JT

c ,
Rc = RT

c ≥ 0 and Qc > 0 such that (Jc−Rc)Qc is Hurwitz.

From Kalman-Yakubovich-Popov Lemma the controller
satisfi

Proposition 1. There exist matrices P = PT > 0, P ∈
Rm,m, L ∈ Rm,n such that:

P (Jc − Rc)Qc + QT
c (Jc − Rc)

T P = −LLT (6)

(7)

4. ASYMPTOTIC STABILITY

Theorem 5. ?? Let the state of the open-loop BCS satisfy
1
2

d
dt�x(t)�2

L ≤ u�(t)y(t). Consider a LTI finite dimensional

system with storage function Ec(t) = 1
2 �v(t), Qcv(t)�Rm ,

Qc = Q�
c ≥0 ∈ Rm × Rm satisfying Assuption 4. Then

the feedback interconnection of the BCS and the finite
dimensional system is again a BCS on the extended state
space x̃ ∈ X̃ = X × V with inner product �x̃1, x̃2�X̃ =
�x1, x2�L + �v1, Qcv2�V . Furthermore, the operator Ae

defined by

Aex̃ =

�
J L 0
BcC Ac

� �
x
v

�

with

D(Ae) =

��
x
v

�
∈
�
X
V

� ���Lx ∈ HN (a, b; Rn),

�
f∂,Lx

e∂,Lx

v

�
∈ ker W̃D

�
,

where
W̃D =

�
(W + DcW̃ Cc)

�

generates a contraction semigroup on X̃.

Theorem 6. Consider the controller satisfying Assumption
4 connected to the impedance passive system as in Figure
??. Then the operator Ae described in Theorem 5 has
compact resolvant.

Theorem 7. Consider the feedback system of Figure ??
where the controller is chosen satisfying Assumption 4.
Then the closed loop system ?? such that r = 0 is globally
asymptotically stable. That is for any w(0)

5. ENERGY SHAPING

In the case of power preserving interconnection at the
boundary of the form (??), the closed loop Hamiltonian
function is equal to the sum of the Hamiltonians of the
open-loop system (plant) and the controller ???: Ẽ(x, v) =
E(x)+Ec(v). In order to use this closed loop Hamiltonian
as Lyapunov function, one has to guarantee that its

minimum is at the desired equilibrium ∂Ẽ
∂x (x∗) = 0. For

this purpose, and in a similar manner as for control of finite
dimensional port-Hamiltonian systems ?, it is possible to
relate the state variables of the controller with the state
variables of the plant by using structural invariants (i.e.,
which do not depend on the Hamiltonian) named Casimir
functions. Indeed, if it is possible to find Casimirs of the
form C(x, v) = v − F (x), with F (x) some smooth well
defined function of x, then on every invariant manifold
defined by v − F (x) = κ, with κ ∈ R a constant which
depends on the initial states of plant and controller, the
closed-loop Hamiltonian may be written as Ẽ(x, v) =
E(x) + Ec(F (x) + κ). The closed-loop Hamiltonian may
then be shaped by an appropiate choice of Ec.

In the following we give sufficient conditions such that
Casimir functions exist in the case of closed loop control
with dissipative port Hamiltonian controller.

Definition 8. ?? Consider the BCS defined by Theorem
2 with r = 0. A function C : X × V → R is a Casimir
function if Ċ = 0 along the solutions for every possible
choice of L(·) and Qc.

Following ? we will look for linear Casimir functions in the
form

C(x(t), v(t)) = Γ�v(t) +

� b

a

Ψ�(z)x(t, z)dz (8)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ�(z)x(t, z) ∈ H1(a, b; Rn).
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Asymptotic stability

Finite dimensional port Hamiltonian controller

v̇ = (Jc − Rc)Qcv + Bcuc , yc = B>c Qcv , Ec(t) = 1
2 v(t)>Qcv(t)

where we assume that Qc = Q>c > 0, Jc = −J>c , Rc = R>c ≥ 0 and Bc are real
constant matrices of proper dimensions. Furthermore, the controller is assumed to be
exponentially stable, i.e., Ac := (Jc − Rc)Qc is Hurwitz.

Theorem

Consider the above controller connected to the impedance passive system through
u = r − yc , uc = y . Then the operator Ae described in the previous theorem has
compact resolvant.

Theorem

Consider the feedback system u = r − yc , uc = y where the controller is chosen
satisfying the condition above. Then the closed loop system such that r = 0 is globally
asymptotically stable.
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Sketch of proof

• Let first consider that ω(0) ∈ D (Ae). By the aforementioned Theorem
[Villegas(2007)], Ae generates a contraction semigroup.

• Let now consider the energy as Lyapunov function Ec(t) = 1
2 〈ω(t), ω(t)〉X̃ . Since

ω(0) ∈ D (Ae) and:

dEc(t)
dt

= 〈ω̇(t), ω(t)〉X̃ = 〈Aeω(t), ω(t)〉X̃ = −vT Qd v (3)

where Qd > 0. Since (λI −Ae)−1 is compact and the semigroup is a contraction
it follows from LaSalle’s invariance principle that all solutions asymptotically tend
to the maximal invariant set Oc =

{
x̃ ∈ X̃ |Ėc = 0

}
.

• Let E be the largest invariant subset of Oc . We can prove that E = {0}. From
Ėc(t) = 0 and (3) we have v(t) = 0 and then v̇(t) = 0. Let η < n be the rank of
ker(Bc). Form the controller structure yc = 0 and n − η > 0 components of uc
equal 0. It follows that Oc reduces to the solution of a first order PDE of dimension
n with 2n − η boundary variables set to zero. It follows from Holmgren’s Theorem
that x̃(t) = 0, hence the asymptotic stability. The same hold for ω(0) ∈ X̃ by using
denseness argument [?].
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Dynamic boundary feedback!
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ABOUT TWEEZERS 2





ẋ = J Lx�
u
y

�
=

�
W

W̃

� �
f∂,Lx(t)
e∂,Lx(t)

�

Define the output of the system as the linear mapping

C : L−1H1(a, b; Rn) → Rn, y = Cx(t) := W̃

�
f∂,Lx(t)
e∂,Lx(t)

�
.

Then for u ∈ C2(0,∞; Rk), Lx(0) ∈ H1(a, b; Rn), and

u(0) = W
�

f∂,Lx(0)

e∂,Lx(0)

�
the following balance equation is

satisfied:

1

2

d

dt
�x(t)�2

L =
1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
− �G0Lx(t), Lx(t)�

≤ 1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
.

(3)

The matrix PW,W̃ is defined only when
�

W
W̃

�
is invertible.

Notice that in the absence of some internal dissipation
(G0 = 0) the system only exchanges energy with the
environment through the boundaries since the input and
output act on the boundary of the spatial domain. Finally
we remark that the balance equation (3) may be rewritten
as:

1

2

d

dt
�x(t)�2

L ≤
�
(Lx)(t, b)
(Lx)(t, a)

�� �
P1 0
0 −P1

� �
(Lx)(t, b)
(Lx)(t, a)

�
(4)

Remark 3. As it has been pointed out in ?, if the matrices
W and W̃ are selected such that PW,W̃ = [ 0 I

I 0 ] = Σ, then

the BCS fulfils 1
2

d
dt�x(t)�2

L ≤ u�(t)y(t).

3. DYNAMIC BOUNDARY CONTROL

In what follows we consider the feedback loop of Figure ??
where the infinite dimensional system is is an impedance
passive system as described in Theorem 2. This intercon-
nection is power preserving and satisfies:

u = r − yc, uc = y

Furthermore we consider that the controller satisfies As-
sumption 4

Assumption 4. We consider a controllable, observable and
exponentially stable port Hamiltonian controller on the
form:

v̇ = (Jc − Rc)Qcv + Bcuc,
yc = BT

c Qcv
(5)

with state space v ∈ V = Rm, set of input values
uc ∈ Uc = Rn and set of output values yc ∈ Y = Rn.
The set Uc of admissible inputs consists of all Uc-valued
piecewise continuous functions defined on R. Jc, Rc , Qc

and Bc are constant real matrices of dimension m × m,
m × m, m × m, and m × n, respectively with Jc = −JT

c ,
Rc = RT

c ≥ 0 and Qc > 0 such that (Jc−Rc)Qc is Hurwitz.

From Kalman-Yakubovich-Popov Lemma the controller
satisfi

Proposition 1. There exist matrices P = PT > 0, P ∈
Rm,m, L ∈ Rm,n such that:

P (Jc − Rc)Qc + QT
c (Jc − Rc)

T P = −LLT (6)

(7)

4. ASYMPTOTIC STABILITY

Theorem 5. ?? Let the state of the open-loop BCS satisfy
1
2

d
dt�x(t)�2

L ≤ u�(t)y(t). Consider a LTI finite dimensional

system with storage function Ec(t) = 1
2 �v(t), Qcv(t)�Rm ,

Qc = Q�
c ≥0 ∈ Rm × Rm satisfying Assuption 4. Then

the feedback interconnection of the BCS and the finite
dimensional system is again a BCS on the extended state
space x̃ ∈ X̃ = X × V with inner product �x̃1, x̃2�X̃ =
�x1, x2�L + �v1, Qcv2�V . Furthermore, the operator Ae

defined by

Aex̃ =

�
J L 0
BcC Ac

� �
x
v

�

with

D(Ae) =

��
x
v

�
∈
�
X
V

� ���Lx ∈ HN (a, b; Rn),

�
f∂,Lx

e∂,Lx

v

�
∈ ker W̃D

�
,

where
W̃D =

�
(W + DcW̃ Cc)

�

generates a contraction semigroup on X̃.

Theorem 6. Consider the controller satisfying Assumption
4 connected to the impedance passive system as in Figure
??. Then the operator Ae described in Theorem 5 has
compact resolvant.

Theorem 7. Consider the feedback system of Figure ??
where the controller is chosen satisfying Assumption 4.
Then the closed loop system ?? such that r = 0 is globally
asymptotically stable. That is for any w(0)

5. ENERGY SHAPING

In the case of power preserving interconnection at the
boundary of the form (??), the closed loop Hamiltonian
function is equal to the sum of the Hamiltonians of the
open-loop system (plant) and the controller ???: Ẽ(x, v) =
E(x)+Ec(v). In order to use this closed loop Hamiltonian
as Lyapunov function, one has to guarantee that its

minimum is at the desired equilibrium ∂Ẽ
∂x (x∗) = 0. For

this purpose, and in a similar manner as for control of finite
dimensional port-Hamiltonian systems ?, it is possible to
relate the state variables of the controller with the state
variables of the plant by using structural invariants (i.e.,
which do not depend on the Hamiltonian) named Casimir
functions. Indeed, if it is possible to find Casimirs of the
form C(x, v) = v − F (x), with F (x) some smooth well
defined function of x, then on every invariant manifold
defined by v − F (x) = κ, with κ ∈ R a constant which
depends on the initial states of plant and controller, the
closed-loop Hamiltonian may be written as Ẽ(x, v) =
E(x) + Ec(F (x) + κ). The closed-loop Hamiltonian may
then be shaped by an appropiate choice of Ec.

In the following we give sufficient conditions such that
Casimir functions exist in the case of closed loop control
with dissipative port Hamiltonian controller.

Definition 8. ?? Consider the BCS defined by Theorem
2 with r = 0. A function C : X × V → R is a Casimir
function if Ċ = 0 along the solutions for every possible
choice of L(·) and Qc.

Following ? we will look for linear Casimir functions in the
form

C(x(t), v(t)) = Γ�v(t) +

� b

a

Ψ�(z)x(t, z)dz (8)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ�(z)x(t, z) ∈ H1(a, b; Rn).
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Control through energy shaping

Idea:

Use the total energy as Lyapunov function candidate

From the power preserving interconnection:

Ẽ(x , v) = E(x) + Ec(v)

We are looking for Casimir functions (structural invariants⇒ Ċ = 0) on the form:

C(x , v) = v − F (x)

then
v − F (x) = κ

And
Ẽ(x , v) = E(x) + Ec(F (x) + κ)

It remains to choose Ec and to add dissipation such that:

∂Ẽ
∂x

(x∗) = 0, and
dE
dt

(x) < 0
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Casimir

Let consider the structural invariants of the closed loop system i.e. Casimirs, of the
form:

C(x(t), v(t)) = Γ>v(t) +

∫ b

a
Ψ>(z)x(t , z)dz (4)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ>(z)x(t , z) ∈ H1(a, b;Rn).

Computation of Casimir functions

Let consider the previously defined boundary controlled port Hamiltonian system with
r = 0. Then (8) is a Casimir function for the closed loop system if and only if:

P1
∂

∂z
Ψ(z) + (P0 + G0)Ψ(z) = 0, (5)

(Jc + Rc)Γ + BcW̃R
[

Ψ(b)
Ψ(a)

]
= 0, (6)

B>c Γ + WR
[

Ψ(b)
Ψ(a)

]
= 0. (7)
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Energy shaping

From the power preserving interconnexion:

Ẽ(x , v) = E(x) + Ec(v)

We are looking for Casimirs on the form:

C(x , v) = v + F (x)

then
v + F (x) = κ

And
Ẽ(x , v) = Ẽ(x) = E(x) + Ec(−F (x) + κ)

It remains to choose Ec s.t.
∂Ẽ
∂x

(x∗) = 0
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Casimirs

Let consider the structural invariants of the closed loop system i.e. Casimirs, of the
form:

C(x(t), v(t)) = Γ>v(t) +

∫ b

a
Ψ>(z)x(t , z)dz (8)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ>(z)x(t , z) ∈ H1(a, b;Rn).

Casimirs

Consider the previously defined BCS with r = 0, where the controller is a dissipative
port Hamiltonian controller. Then (8) is a Casimir function for the extended system if:

P1
∂

∂z
Ψ(z) + (P0 + G0)Ψ(z) = 0, (9)

(Jc + Rc)Γ + BcW̃R
[

Ψ(b)
Ψ(a)

]
= 0, (10)

B>c Γ + WR
[

Ψ(b)
Ψ(a)

]
= 0. (11)
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Exponential stability: result

Theorem

Consider the BCS previously defined with r(t) = 0, for all t ≥ 0. It is exponentially
stable as soon as

• the finite dimensional boundary controller is exponentially stable and strictly input
passive

• and ‖u(t)‖2 + ‖y(t)‖2 ≥ ε‖Lx(t , b)‖2, ε > 0

• The proof follows the same steps as in
[Villegas et al.(2009)Villegas, Zwart, Le Gorrec, and Maschke] including the
energy contribution of the finite dimensional controller.

• We used the contraction properties of the total energy used as Lyapunov function,
the condition on the interconnection and the exponential stability of the controller.
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Exponential stability: assumptions

Finite dimensional port Hamiltonian controller

v̇ = (Jc − Rc)Qcv + Bcuc , yc = B>c Qcv + Scuc , Ec(t) = 1
2 v(t)>Qcv(t)

where we assume that Qc = Q>c > 0, Jc = −J>c , Rc = R>c ≥ 0, Sc = S>c > 0 and Bc
are real constant matrices of proper dimensions. Furthermore, the controller is
assumed to be exponentially stable, i.e., Ac := (Jc − Rc)Qc is Hurwitz.
The system is a strictly input passive port-Hamiltonian system, i.e. there exists a σ > 0
such that

Ėc(t) ≤ uc(t)>yc(t)− σ‖uc(t)‖2.

Input and output of the BCS

We also assume that the BCS satisfies

‖u(t)‖2 + ‖y(t)‖2 ≥ ε‖Lx(t , b)‖2 (12)

for some ε > 0.
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Exponential stability : existence of solutions

Theorem [Villegas(2007)]

Let the open-loop BCS satisfy 1
2

d
dt ‖x(t)‖2

L = u(t)y(t). Consider a LTI strictly passive finite
dimensional system with storage function Ec(t) = 1

2 〈v(t),Qcv(t)〉Rm . Then the power preserving
feedback interconnection

u = r − yc , y = uc ,

with r ∈ Rn the new input of the system is a BCS on the extended state space x̃ ∈ X̃ = X × V with
inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L + 〈v1,Qcv2〉V . Furthermore, the operator Ae defined by

Ae x̃ =

[
JL 0
BcC Ac

] [
x
v

]
, D(Ae) =

{[
x
v

]
∈
[

X
V

] ∣∣∣Lx ∈ HN (a, b; Rn),

 f∂,Lx
e∂,Lx

v

 ∈ ker W̃D

}

where
W̃D =

[
(W + DcW̃ Cc)

]
generates a contraction semigroup on X̃ .
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Proof (1)

Idea: use Ẽ = E(x) + Ec(v) as Lyapunov function

Lemma

Consider the controlled BCS with r(t) = 0, for all t ≥ 0. Due to the contraction property
the energy of the system Ẽ(t) = 1

2‖x(t)‖2
L + 1

2 v(t)T Qcv(t) satisfies for τ large enough

Ẽ(τ) ≤ c(τ)

∫ τ

0
‖(Lx)(t , b)‖2dt + 2c(τ)

c1

∫ τ

0
Ec(t)dt ,

Ẽ(τ) ≤ c(τ)

∫ τ

0
‖(Lx)(t , a)‖2dt + 2c(τ)

c1

∫ τ

0
Ec(t)dt ,

where c is a positive constant that only depends on τ and c1 a positive constant.
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Proof (1)
In order to prove the exponential stability we need the following lemmas

Lemma
There exist strictly positive constants κ2, κ3 and κ4 such that for all τ > 0 the energy of the PH controller satisfies:

Ec (τ) ≤ κ1(τ)Ec (0) + κ3

∫ τ
0
‖uc (t)‖2dt (13)

where κ1(τ) = κ4e−κ2τ .

Lemma
There exists positive constants ξ1, ξ2 and τ0 such for all τ > τ0 the energy of the PH controller satisfies

∫ τ
0

Ec (t)dt ≤ ξ1

∫ τ
0

v>(t)Qc Rc Qc v(t)dt + ξ2

∫ τ
0
‖uc (t)‖2dt

Lemma
For every δ1 > 0 there exists a δ2 > 0 such that for all τ > 0 the energy of the PH controller satisfies the relation

∫ τ
0
δ1Ec (t) + ‖yc (t)‖2dt ≤ δ2

∫ τ
0

Ec (t) + ‖uc (t)‖2dt. (14)
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Proof (2)

Let σ > 0 be such that Sc ≥ σI. The time derivative of the total energy satisfies

˙̃E = −v>QcRcQcv − u>c Scuc

≤ −v>QcRcQcv − σu>c uc , since Sc ≥ σI

= −v>QcRcQcv − σε1u>c uc − σε2u>c uc

= −v>QcRcQcv − σε1‖uc‖2 − σε2
(
‖y‖2 + ‖u‖2

)
+

σε2‖u‖2

with ε1 + ε2 = 1 and where we have used that uc = −y .
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Proof (3)
Using our main Assumption we have

˙̃E ≤ −v>QcRcQcv − σε1‖uc‖2 − σε2ε‖Lx(t, b)‖2 + σε2‖yc‖2
.

Integrating this equation on t ∈ [0, τ ] we have

Ẽ(τ)− Ẽ(0) ≤ −
∫ τ

0
v>(t)QcRcQcv(t)dt

+

∫ τ

0
− σε1‖uc(t)‖2 − σε2ε‖Lx(t, b)‖2 + σε2‖yc(t)‖2dt.

Next choose τ sufficiently large such that Lemmas 2 and 3 hold. Using the latter lemma we have

Ẽ(τ)− Ẽ(0) ≤ −
∫ τ

0
v>QcRcQcv + σε1‖uc‖2dt

+
σε2ε

c(τ)

(
2c(τ)

c1

∫ τ

0
Ec(t)dt − Ẽ(τ)

)
+ σε2

∫ τ

0
‖yc‖2dt.

Grouping terms we have that

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤

−
∫ τ

0
v(t)>QcRcQcv(t)dt − σε1

∫ τ

0
‖uc(t)‖2dt

+σε2

(∫ τ

0

2ε
c1

Ec(t) + ‖yc(t)‖2dt
)
.
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Proof (4)

Using Lemma 3 with δ1 = 2ε
c1

we have

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤ −

∫ τ

0
v(t)>QcRcQcv(t)dt

+ σε2δ2

∫ τ

0
Ec(t)dt + σ(ε2δ2 − ε1)

∫ τ

0
‖uc(t)‖2dt. (15)

Now, using Lemma 2 we obtain

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤

(σε2δ2ξ1 − 1)

∫ τ

0
v(t)>QcRcQcv(t)dt+

σ(ε2δ2(1 + ξ2)− ε1)

∫ τ

0
‖uc(t)‖2dt.

Since ε2 may be chosen to be arbitrarily small, i.e, ε2 � 1 and since ε1 = 1− ε2, we finally have
that Ẽ(τ) ≤ c2Ẽ(0) with c2 = 1(

1+
σε2ε
c(τ)

) < 1 which proves the theorem. [?]
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Conclusion

In this part we where interested in asymptotic and exponential stability of boundary
controlled port Hamiltonian systems. In the static case we gave:

• necessary and sufficient condition on the feedback such that the system is
asymptotically stable,

• sufficient condition for exponential stability.

In the dynamic case:
• we have shown that the controller has to be exponentially stable to have

asymptotic stability.
• we gave a parametrization with associate conditions of the Casimir functions,
• we have shown that the controller has to be exponentially stable and strictly input

passive to have exponential stability.
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Thank you for your attention !
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