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Aim of this part

We are now interested in stability of BCS. We consider:
+ Asymptotic stability
+ Exponential stability
in the case of
- Static boundary feedback
+ Dynamic boundary feedback

we will also see how the design dynamic controllers in order to shape the closed loop
energy function by using structural invariants.

FEMTO-ST/UFC-ST 3/39




Stability

We are interested in (exponential) stability of abstract systems of the form
x(t) = Ax(t), t >0, x(0) =xp

i.e. when the solution tends to zero (exponentially) fast as t — 0.

Definition

The Co semigroup (T(t)):>0 on X is exponentially stable if there exist positives
constants M and « such that

IT(D)] < Me=<! fort >0
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Stability

Suppose that A is the infinitesimal generator of a Cy semigroup (7 (t));>0 on X. The
following are equivalent

1. (T(1))t>0 is exponentially stable
2. There exists a positive operator P € £(X) such that

(Ax, Px) + (Px, Ax) = —(x, x) for all x € D(A) (1)
3. There exists a positive operator P € £(X) such that
(Ax, Px) + (Px, Ax) < —(x, x) for all x € D(A)

Equation (1) is called Lyapunov equation.
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Stability

When there exists a positive operator P € £(X) such that
(Ax, Px) + (Px, Ax) < 0 for all x € D(A)

one has to prove that there exists an invariant set and that this invariant set reduces to
zero.
Lassale’s invariant principle
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

ox 1o}

— = Pi— (L(2)x)(t, z Po—Go)L(2)x(t, z

ot — 15z (L)1 2)) + (Po—Go) L(2)x(t, 2)
Py =P, Py=—P),Gy>0,x€R", z€ (ab), £L(z) = L(z)T > 0. State space
X = Lz(a, b; Rn) with <X1,X2>£ = <X1,£.X2> and the norm ||X1 HZE = <X1,X1>L.
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

ox 1o}

— = Pi— (L(2)x)(t, z Po—Go)L(2)x(t, z

ot — 15z (L)1 2)) + (Po—Go) L(2)x(t, 2)
Py =P, Py=—P),Gy>0,x€R", z€ (ab), £L(z) = L(z)T > 0. State space
X = Lz(a, b; Rn) with <X1,X2>£ = <X1,£.X2> and the norm ||X1 HZL = <X1,X1>L.

The norm || - || is equivalent to the energy of the system
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Boundary controlled port Hamiltonian systems

Considered class of PDEs (1D)

ox 1o}

— = Pi— (L(2)x)(t, z Po—Go)L(2)x(t, z

ot — 15z (L)1 2)) + (Po—Go) L(2)x(t, 2)
Py =P, Py=—P),Gy>0,x€R", z€ (ab), £L(z) = L(z)T > 0. State space
X = Lz(a, b; Rn) with <X1,X2>£ = <X1,£.X2> and the norm ||X1 HZL = <X1,X1>L.

Boundary port variables

Let £x € H'(a, b; R"). Then the boundary port variables are the vectors
€o,cx; fo,cx € R7,

[se]-u 0 P8 -nlizse)
Where

UTsUu=%, ¥ = [‘,’ é] ¥ € Mon(R)
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n x 2n real matrix. If W has full rank and satisfies W W™ > 0, then the
system 2 = P; 2 (L(2)x)(t, 2)) + (Po — Go)L(2)x(t, z)with input

s0-wlbel]

is a BCS on X. The operator Ax = P;1(8/9z)(Lx) + (Po — Go)Lx with domain

{fa’“(t)} € ker W}

D(A) = {Cx €H'(a bR || cx(t)

generates a contraction semigroup on X.
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a full rank matrix of size n x 2n with [%] invertible and let P,,, , be given by

1 .
b _ (W) _[wswT wswT]™
ww =\ W W T \WwwT  WswT| -
Define the output of the system as the linear mapping C : £~ "H(a, b;R") — R”",
fB,U(t)] )

€a,cx(t)

y =Cx(t) := W[

Then for u € C2(0, 00; RK), £x(0) € H'(a, b; R"), and u(0) = W [;zvixx‘(%))] the

Bl mae]
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Closed loop control with static feedback

Impedance passive case

As it has been pointed out in [Villegas(2007)], if the matrices W and W are selected
such that P, 5, = [9 /] = £, then the BCS fulfills

1d

5 2 XN < uT (OO

r U i=g0 y
—= O () 7(5) k= gex
1 r=(weaw) ()
7 f,
()
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Closed loop control with static feedback

Asymptotic stability

Assume that (A —.A)~" : X — X is a compact operator for A > 0. Then the system
described by:

)'(ZJL;X

r=(weaw) (2
= i

y:W( e

with r = 0 and « > 0 is asymptotically stable.

Sketch of poof

We use the energy as Lyapunov function and Lassale’s invariant principle. First the
closed loop system is a BCS with infinitesimal generator of a contraction semigroup as

soonasa > 0. Ifu=0, 24 = —yTay
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Exponential stability

Consider a BCS such that W% WJ > 0 with u(t) = 0, for all £ > 0. Then the energy of
the system E(t) = (1/2)||x(t)||2£ satisfies for 7 large enough

E(r) < c(r) /O "It b)Edt, and E(r) < c() /0 "Xt a)2at,

Theorem : exponential stability.

BCS is exponentially stable if the energy of the system satisfies
(dE/dt) < —K||(£x)(t, b)|% or (dE/dt) < —kl|(Lx)(t, @)l

where k is a positive real constant.
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®
Example : Timoshenko beam
As state variables we choose
= ¢ shear displacement,
o= p2. transverse momentum distribution,
X3 = g2 . angular displacement,
X4 = lp% : angular momentum distribution.
Then the model of the beam can be rewritten as
1 0100 Kx 00 0 —1 Kx
Ol % | _|1 00 0|0 f % | 1000 0 5 X2
ot xs | |0 0 0 1 |5z Elx 0 00 O© El xs
X4 00 10 T+ xa 100 0 x4
—_— P P
Py Po —
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Velocity feedback

One can define the boundary port variables:

(r~ " x2)(b) — (p~"x2)(a)
(Kx1)(b) — (Kxi)(a)

(I, " xa)(b) — (I, "xa)(a)
[?] _ 1 —M X _ X3 — (Elx3)(a
(f )_ 1 [P P }((cxb))_ 1 (Elxs)(b) — (Elx3)(a)
N (£x)(a) V2 (Kx1)(b) + (Kxq)(a)

(r~ " %)(b) + (p~"x2)(a)
(Elxs)(b) + (Elxs)(a)

(I, " xa)(b) + (I, " xa) ()

)

Let us consider stabilization by applying velocity feedback i.e. following BC:
j xe(a) =0, ﬁx“(a) =0,

/J(a

K(b)xi(b,1) = —a1 5l (b, 1), Elb)xs(b, 1) =~z Ly Xa(b)
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Velocity feedback
Input mapping:
-1 0 0 o0
1 0 0 -1 0
Wo="751 ai 1 0 o0
0 0 (7] 1
then
0 O 0
0 0 O
WyzW] =2 0 0 o
0 O 0
As output we can choose
—K(a)xi(a) 0
—(EN(a)xs(a) N 1 0
= 1 i =
y ﬁxz(b) , with W 7| 1
——x4(b) 0
Tot)

o —+00

[oNeNe)

a2

[eNe N

- OO0 o

- O OO

[N N e)

0
1
0
a2
-1 0 O
0 0 -1
o1 0
0 0 O

- OO0 o
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Velocity feedback

Then

Energy balance:

S ) = 21X = (D), YD)~ (ay(0), ()
where
(@0, y(0)z = al(p™ 52)(b, ) + a2l(1~"x2) (b, D
Then
IExO) B = () (B)R + (o~ ) (B + [(Ehs)(B)E + [ xs) (D)2
= (7 + Dl )b, + (08 + DIl x)(0)
< Koy (), V(D) = ~R GE(D
— Stability
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Dynamic boundary feedback

Consider a strictly passive linear finite dimensional system
\./:Acv-‘chUc, Ye = CcV-‘r D(;Uc.

with storage function Ec(t) = 1(v()Qev(t))gm, Qc = Q] >0 € R™ x R™.

Theorem [Villegas(2007)]

Let the open-loop BCS satisfy § & 9 |x(8)]|% = u(t)y(t). Consider a LTl strictly passive finite

dimensional system with storage function Ec(t) = % (v(t), Qcv(t))zm. Then the power preserving
feedback interconnection

u=r-—ye, Y = U,

with r € R” the new input of the system is a BCS on the extended state space ¥ € X = X x V with
inner product (X1, X2) 5 = (X1, X2) £ + (v1, QeVa) v. Furthermore, the operator A, defined by

fa,cx .
Ak = [gé /‘u m . D(Ae) = { m c m ‘Lx € H¥(a, b;R"), {ea‘,’u} € ker WD}

where . 5
Wp = [(W+ D.W  Cc)]

generates a contraction semigroup on X.

femto-st
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Dynamic boundary feedback

Ye 1= (J. — R)Qev + Beue,| M€
Ye = BZQCU B
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Asymptotic stability

Finite dimensional port Hamiltonian controller
V= (Jc cs Rc)OcV aF BcUc, Ye = B;r C?(:V7 Ec(t) = %V(t)TQcV(f)

where we assume that Qc = QJ >0, Jo = —JJ , Rc = R} > 0 and B; are real
constant matrices of proper dimensions. Furthermore, the controller is assumed to be
exponentially stable, i.e., Ac := (Joc — Rc)Qc is Hurwitz.

Theorem

Consider the above controller connected to the impedance passive system through
u=r—yeUc=Yy. Then the operator .4, described in the previous theorem has
compact resolvant.

Theorem

Consider the feedback system u = r — y;¢, uc = y where the controller is chosen
satisfying the condition above. Then the closed loop system such that r = 0 is globally
asymptotically stable.
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Sketch of proof

* Let first consider that w(0) € D (.Ae). By the aforementioned Theorem
[Villegas(2007)], Ae generates a contraction semigroup.

* Let now consider the energy as Lyapunov function E¢(t) = %(w(t),w(i)))?. Since
w(0) € D(Ae) and:
dEc(t)

2 = @1, w(0)x = (Aew(D). ()5 = —v7 Qgv @

where Qg > 0. Since (A — Ae)*1 is compact and the semigroup is a contraction
it follows from LaSalle’s invariance principle that all solutions asymptotically tend

to the maximal invariant set O¢ = {f( e X|E: = 0}.

+ Let & be the largest invariant subset of O.. We can prove that £ = {0}. From
E.(t) = 0 and (3) we have v(t) = 0 and then ¥(t) = 0. Let y < n be the rank of
ker(Bc). Form the controller structure y. = 0 and n — n > 0 components of uc
equal 0. It follows that O reduces to the solution of a first order PDE of dimension
n with 2n — n boundary variables set to zero. It follows from Holmgren’s Theorem
that X(t) = 0, hence the asymptotic stability. The same hold for w(0) € X by using
denseness argument [?].

FEMTO-ST/UFC-ST 22/39




Dynamic boundary feedback

Ye 1= (J. — R)Qev + Beue,| M€
Ye = BZQCU B
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Control through energy shaping

Use the total energy as Lyapunov function candidate

From the power preserving interconnection:
E(x,v) = E(x) + Ec(v)
We are looking for Casimir functions (structural invariants = € = 0) on the form:
C(x,v) =v—F(x)

then
v—F(x)=«k

And ~
E(x,v) = E(x) + Ec(F(x) + k)
It remains to choose E; and to add dissipation such that:

9E dE

a(x*) =0, and E(X) <0

femto-st FEMTO-ST/UFC-ST 24/39
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Casimir

Let consider the structural invariants of the closed loop system i.e. Casimirs, of the
form:

Cix(t), v(t)) = TTv(t) +/b\IIT(z)x(t,z)dz @)
with T € R™, W(z) € R"and W (2)x(t,z) € H'(a, b;R™).

Computation of Casimir functions

Let consider the previously defined boundary controlled port Hamiltonian system with
r = 0. Then (8) is a Casimir function for the closed loop system if and only if:

PIo_ (@) + (Po + Go)¥(2) = O, ©
(Jo + Re)T + BsWR mgﬂ -0, ©)
BIT + WR wg] —0. 7)
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Energy shaping

From the power preserving interconnexion:
E(x,v) = E(x) + Ec(v)
We are looking for Casimirs on the form:
C(x,v) =v+ F(x)

then
v+ F(x) =k

And . .
E(x,v) = E(x) = E(x) + Ec(—F(x) + k)

It remains to choose E;¢ s.t. .
OE
—(x*)=0
ox x7)

fen 'toSt FEMTO-ST/UFC-ST 26/39




Casimirs

Let consider the structural invariants of the closed loop system i.e. Casimirs, of the
form:

b
COx(t), v(t)) = T T v(t) +/ W (2)x(t, 2)dz
with T € R™, W(z) € R" and W7 (2)x(t,2) € H'(a, b;R").

Casimirs

Consider the previously defined BCS with r = 0, where the controller is a dissipative
port Hamiltonian controller. Then (8) is a Casimir function for the extended system if:

P W(2) + (P + Go)¥(2) = O,

®)

5o [W(b
(Jo + Re)l + B:WR {wéaﬂ =0, (10)
T v(b)| _
B, I+ WR {w(a) =0. (11)
ﬁn?\.% FEMTO-ST/UFC-ST 27/39



Exponential stability: result

Consider the BCS previously defined with r(t) = 0, for all t > 0. It is exponentially
stable as soon as
« the finite dimensional boundary controller is exponentially stable and strictly input
passive

* and [lu(t)|Z + ly(5)I* > ell£x(t,b)|I?, e >0

+ The proof follows the same steps as in
[Villegas et al.(2009)Villegas, Zwart, Le Gorrec, and Maschke] including the
energy contribution of the finite dimensional controller.

- We used the contraction properties of the total energy used as Lyapunov function,
the condition on the interconnection and the exponential stability of the controller.
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Exponential stability: assumptions

Finite dimensional port Hamiltonian controller
V= (Je— Re)Qcv + Bote, Yo =B Qv+ Scue, Ec(t) = 3v(t)T Qev(t)

where we assume that Q. = Q] >0, Jc = —JJ ,Re=R] >0,S.=S] >0and B,
are real constant matrices of proper dimensions. Furthermore, the controller is
assumed to be exponentially stable, i.e., Ac := (Jc — Rc)Qc is Hurwitz.

The system is a strictly input passive port-Hamiltonian system, i.e. there existsa o > 0
such that

Ec(t) < uo(t) " yo(t) — olluc(t)]1%.

Input and output of the BCS

We also assume that the BCS satisfies
luI? + lly (I > el £x(t, b)|? (12)

for some € > 0.
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Exponential stability : existence of solutions

Theorem [Villegas(2007)]

Let the open-loop BCS satisfy 1 & [|x(£)[|% = u(t)y(t). Consider a LTI strictly passive finite

dimensional system with storage function Ec(t) = % (v(t), Qov(t))zm. Then the power preserving
feedback interconnection

u=r-=ye, Yy = Uc,

with r € R” the new input of the system is a BCS on the extended state space ¥ € X = X x V with
inner product (X1, X2)x = (X1, X2) £ + (v1, Qcv2)v. Furthermore, the operator A, defined by

fB,EX -
Aok = [gcg /(\)J m , D(Ae) = { m = m |‘3X € H"(a, b;R"), |:36‘,/Lx:| € ker WD}

where . 5
Wp = [(W+ D.W Cc)]

generates a contraction semigroup on X.
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Proof (1)

Idea: use E = E(x) + E;(v) as Lyapunov function

Lemma

Consider the controlled BCS with r(t) = 0, for all t > 0. Due to the contraction property
the energy of the system E(t) = 15||x(t)||§: + %v(t)Tch(t) satisfies for  large enough

= - - T > 2¢(7) i 3
E(r) < o )/O I(ex)(t, b)| Pt + 227 /0 Eo(t)dt,
= - - T 2 20(7_) T 3

E(r) << )/O I(£x)(t, @)[|7dt + =Z= /0 Ec(t)at,

where c is a positive constant that only depends on = and ¢; a positive constant.
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Proof (1)

In order to prove the exponential stability we need the following lemmas

Lemma

There exist strictly positive constants o , kg and k4 such that for all = > 0 the energy of the PH controller satisfies:
i 2
Ec(7) < rq(7)Ec(0) + Na/o [lue(t)|=at (13)

where 4 (T) = rqe” 27,

Lemma

There exists positive constants &4 , £ and T such for all = > T the energy of the PH controller satisfies

/OT Eo(t)at < ¢4 /OT VT (0QeReQov(t)at + &5 /OT llue ()%t

Lemma

Forevery 51 > 0 there exists a 65 > 0 such that for all = > 0 the energy of the PH controller satisfies the relation

/07 81Ec(0) + Ilye(d12at < 55 /OT Ec(t) + lluc(t)12et. (14)

'.éfnto'St FEMTO-ST/UFC-ST 32/39

TECHNOLOGIES



Proof (2)

Let o > 0 be such that S¢ > /. The time derivative of the total energy satisfies

;E = —VTOcRcOcV — U;FS(;UC

< —VvT QeRcQcv — aul Us,  since S¢ > ol

= —vT QeRcQuV — ey ud Ue — oeauy Ue

= —vT QoRoQov — e |ucl? — oep (IyIIP + [lu]?) +
oepl|ull?

with €1 + e = 1 and where we have used that uc = —y.

(R cEs & FEMTO-ST/UFC-ST 33/39




®
Proof (3)
Using our main Assumption we have
& T 2 2 2
E < -V QcR:Qcv —  oer|lucl| —  oexel| Lx(t, b)|| +  oelyell”.

Integrating this equation on t € [0, 7] we have
E(r) — E(0) < — / v (1)QeReQuv(1)t
0
+/ —oer||us(t)|? — eael| £X(t, b) || + oeallye(t) | *dt.
0
Next choose T sufficiently large such that Lemmas 2 and 3 hold. Using the latter lemma we have

E(r)— E(0) < 7/ v QR QeV + et ||ug| Pt
0
+2 ‘"26 ( / E(t)dt — )) +0'62/ llyell2at.
0
Grouping terms we have that

E(r) (1 + ‘ij;) —E@0) <

,/T (1) T QuReQev(t)dt — oes /T llue(t)2at
0 0

o ( I ZEw+ \|yc(t)n2dt) .
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Proof (4)

Using Lemma 3 with 1 = %—1‘ we have

E(r) <1 4 ‘:(f;) —E(0) < —/OT v(t)T QR Qev(t)dt

+06252/ Ec(t)dt+0'(6252761)/ Huc(t)HZdt. (15)
0 0

Now, using Lemma 2 we obtain

E(r) <1 + Z:j;) —E(0) <

(ccodats — 1)/; V(1) T QuReQev(t)dt+

o(cado(1 4 €2) — 1) /0 " ue(d)Pat.

Sincg € may bg chosen to be arbitrarily small, i.e, e2 < 1 and since e; = 1 — €2, we finally have
that E(7) < ¢ E(0) with ¢z = > < 1 which proves the theorem. [?]

.
gepe
(1 e
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Conclusion

In this part we where interested in asymptotic and exponential stability of boundary
controlled port Hamiltonian systems. In the static case we gave:

+ necessary and sufficient condition on the feedback such that the system is
asymptotically stable,

- sufficient condition for exponential stability.
In the dynamic case:

- we have shown that the controller has to be exponentially stable to have
asymptotic stability.

we gave a parametrization with associate conditions of the Casimir functions,

we have shown that the controller has to be exponentially stable and strictly input
passive to have exponential stability.
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Thank you for your attention !
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