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Dynamic systems

Modeling of (deterministic) dynamic systems

Dynamic system

—
Physical laws, data
/y Mathematical Model \
Interactions Interactions

Interactions: Actuation + Measurement

In this course :

Non linear, multi physic, multi scale, distributed parameters systems.
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Example 1 : inverted pendulum system

Example : Segway system
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Example 1 : inverted pendulum system

* Two natural equilibria.
e Control :insure © =0

Non linear mechanical system :
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Example 2 : Nanotweezer for DNA manipulation
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Example 2 : Nanotweezer for DNA manipulation
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Example 3 : lonic Polymer Metal Composite
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o Electromechanical system.

o 3 scales : Polymer-electrode interface, diffusion in the polymer, beam bending.
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Example 4 : Active skin for vibro-acoustic control
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2-D case :
N 1 e 2-D wave equation
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xs * Power preserving interconnection
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Example 5 : Adsorption process

Extra granular

phase / C;é)o(g)g))o gOO 0800 (900\;

ODO
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Rine Yol cm %8 § 8oo 092858:5°Y
o ‘ Z
Macropore scale Bidisperse
Rp %124 mm pellet
fc

Micropore scale
R %1 um

Microporous crystal

e Multiscale heterogeneous system.

e Dynamic behavior driven by irreversible thermodynamic laws
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®
Example 5 : Adsorption process
Extra granular — O
©0009,090Q,0,099
o, RS
L1425 cm o
‘ o$ §08 é30808 %ooo
Rin 41 cm [©) Q0 [eXfelele]
—
o Z
Macropore scale Bidisperse
Rp%1,24mm pellet
Ic
Micropore scale Microporous crystal
R V1 um
e Multiscale heterogeneous system.
e Considered phenomena :

o Fluid scale : convection, dispersion.

o Pellet scale : diffusion (Stephan-Maxwell).

* Microscopic scale : Knudsen law.
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Toward more complex systems ...

Tokamak nuclear reactor
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magnetic field coils
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Models and Complexity :

o A model is always an approximation of reality.
e A model depends on the problem context.
e A model has to be tractable.

Derive a mathematical model based on Physics useful for :
e Simulation (model reduction)
e Analysis
o Control design
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Models and Complexity (illustration)

Extra granular R
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Port Hamiltonian framework

Philosophy
e Geometric framework based on a universal conserved quantity : the Energy.

o Use of power conjugated variables names "flows" and "efforts" variables.
o Associated with a powerful graphical tool : the Bond Graphs.

Characteristics

e Formalism coming from differential geometry (free of coordinates, useful for model
reduction).

o Suitable for functional analysis (finite and infinite dimension) and system control
theory.
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Port Hamiltonian framework

Port Hamiltonian systems

Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized
(2001) to distributed parameter systems.

() { % = (J(x) — R(x)) 2Hx Ju e 2) X = (700 — R(x)) 52
x(t) : x(t,z) : f: SH(x
y = B(x)T 2500 ( o) ) 5o
o Central role of the energy.
» Additional information coming from the geometric structure.
o Multi-physic framework.
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A simple example ...
Let consider the mass spring damper system :

f

u(t t FO
( System —Y()
k

x(t)

From the Newton’s second law :

Mx = —kx — fx + F
which is usually treated using the canonical state space representation :

(0)=(5% ) )-(5)r
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A simple example ...
Let consider the mass spring damper system :

f

F(t)
e System _y(t)
k

>

x(t)

From the Newton’s second law :
Mx = —kx — fx + F

An alternative representation consist in choosing the energy variables (extensives
variables) as state variables i.e (x,p = Mx)

(3)-(5 ()0

with H(x, p) = kx? + & p?
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A simple example ...
Let consider the mass spring damper system :

f

F(t)
e System _y(t)
k

x(t)

From the Newton’s second law :

Mx = —kx — fx+ F

Definingy s.t. :
(5) = (5 %) (o )-(9)r
ro= o (R

dH OHTdx oHT OH oHT
— =" Z==_ (J-R=—+=— Bu<
gt —ox dt —ox YUMot usyTu

ox  0x
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Back to the modeling

The previous model can be written from the interconnection of a subset of basic
mechanical elements :

e A moving inertia.

e A spring.

e A damper.

o A source and some interconnection relations.

Structured modeling

Each element is characterized by a set of power conjugated variables, the flow
variables and the effort variables (intensive variables). The state variable is derive from
the time integration of the flow variables (extensive variables). When the component is
purely dissipative there is no associated state variable.
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Moving inertia

Set of power conjugated variables :
e Flow variable : Force

dp
> _F
dt

o Effort variable : velocity

State variable and energy
o Extensive variable : kinetic momentum p
e Energy

1 2
Ep) =2

N

Xi1
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Spring

Set of power conjugated variables :
o Flow variable : Velocity

&,
at
o Effort variable : Force
F(x) = kx

State variable and energy
o Extensive variable : position x
e Energy

Xs1
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Damper

Set of power conjugated variables :

o Flow variable : Velocity
Vd
o Effort variable : Force
F = kvy
Dissipated (co)energy :

D(v) = kv3
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Transformers and sources

Power preserving transformations :

o Relation between velocities
Fz_Vz
Vo = Nv4 Fl, Vi

¢ Relation between forces l//

F1 = an

There exist different kind of sources
o Velocity sources
V(1) = vs(t)

o Forces sources,
F(t) = Fs(1)
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Interconnection

When two or more mechanical subsystems are interconnected one can write at the
interconnection point :

o Equality of the velocities,

o Forces balance,
Fi+Fs+Fg=F
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Back to the example

u(t

System

o Equality of the velocities,
o Forces balance,

States variables : (x p)”

dp

dt

F|
¥ ©
k

Vg=Vs=Vi=V

Fit+Fs+Fg=F

F—Fs—Fy=F—hkx—1fv
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Electric circuits

Coupling between electric fields and magnetic fields
o Capacitors.
e Inductors.
o Resistors.
o Transformers and sources.
o Interconnection relations.
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Capacitors

Set of power conjugated variables :
o Flow variable : Current

% _,
a
o Effort variable : Voltage

Via) = 5

State variable and energy

o Extensive variable : charge q
e Energy

—_
n

11
2¢c?
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®
Inductors
Set of power conjugated variables :

o Flow variable : Voltage

do

a Y
o Effort variable : Current ‘ u, P

(9)=7@ "

State variable and energy
o Extensive variable : Flux-linkage ¢
e Energy :
11
E(x) = = —¢?
(0 =579
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Resistors

Set of power conjugated variables :

o Flow variable : Current
ir
o Effort variable : Voltage
u = Rir
Dissipated (co)energy :

D(ir) = Ri?
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Interconnection

o Kirchhoff’s Current Law (KCL) :

for each node.
o Kirchhoff’s Voltage Law (KVL) :

for each loop.
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Transformer and sources

Transformer
o Relationships :
. 7]
Uy =nuz, h = —
n
o Power preserving reprsentation (iyuy = i>Us)
Sources
* Voltage source

e Current source
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Example

Linear RLC Circuit
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Example

The system is made up with four elements :

e \oltage source : u=¢e,i

e Capacitor (Qc, ic, Uc)

e Inductor (b, v, ;)

o Resistor (ig, Ur)
The interconnection is given by :

u=up+u +ug i=ig=i =1ic

Dynamic equations :

& dQc
dt
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Example

Port Hamiltonian formulation. The dynamics is given by
d/Q\_(0 1 lae 0
a(8)=( ) (e )= (9)e

with output mapping :
i=(0 1) (

The energy is given by E = 1 (%Oﬁ + {cbf) with balance

~I=0|=
LS
N————

dE T, P
—=uTi-R
at ut !
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Hydraulic systems

o State variable : Volume V
e Flow variable : Volume flow
o Effort variable : Pressure P = £ Vg
The dynamic equation if given by :
av
dt
The energy is defined by :

= Qjn — Qout Where Gout = CVh

1p »
V)= [ Pav =1Ly
E(V) /Vd S hvig
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Hydraulic systems

Then

and

with

o™ oo
g
B
av__CoE
at — vhov 9
OF
p=25_ pgh
5y = P9
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Port based modeling of physical systems

Port Hamiltonian formulation

The idea is to generalize what has been proposed for mechanical and electrical
systems to other class of systems.
Why ?

* We have pointed out some common properties : storage, dissipation and
transformation.

» Engineering systems are a combination of subsystems related to possible
different physical domains and interconnection has to be consistent. See for
example Adsorption processes.

» Decomposition in basic elements helps in modeling of complex dynamic systems
(coming from different areas).

o Modeling is attached to the notion of graph.

Doctoral Course 38/56
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Port based modeling of physical systems

Much more fundamental reasons :

o Central role of the energycan be used for control purposes. Lyapunov based
approaches.

o More information are taken into account in the model through symmetries.

e The model is a knowledge based model that takes the non linearities and the
distributed aspects into account.
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Generalized Bond Graph

Decomposition in basic elements is linked to Generalized Bond Graph (Paytner,
Breedveld) :

» Systems are decomposed in elements with specific energetic behavior : storage,
dissipation and transformation.

o Each element is characterized by a pair of power conjugated variables : the flow
variables f € F and the effort variables e € £. The associated power port is given
by :

P=fTe
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Port based modeling

fc
Storage _ Interconnection
€c

D

fy €p

F=FcxFpxFpandE =EcxEr x &p

Dissipation
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Dynamic relations : storage element

In case of storage elements :

o The state variable x is the extensive variable of Thermodynamics. It is linked to
the flow variables through the balance equation :

ax
= — _f

dt ¢

* The effort variable is linked to the energy variable through the relation :

_dE

ec = ec(x) = o

e The Energy balance is given by

dE (dE)T (dx) -
— = | = — | =efe
dt dx at
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Dissipation

In the case of dissipation :
or
Such that

Examples :

Then

er=—e(f); f=H£

fr=—f(e); e=er
eTf(e)>0, e(f)7f>0
u=Ri, D=u"i=RP

F=fx, D=xF = fx?

e;f,q <0

femto-st
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Interconnexion

e 1 Junction (flow junction) :

o Equality of effort variables
* Balance on the flow variables

Example : Kirchhoff’s voltage law

e 0 Junction (flow junction) :

o Equality of flow variables
o Balance on the effort variables

Example : Kirchhoff’s current law
o |deal transformer "TF" :

€1
fa

o Ideal gyrator "TF" :

(2)-(

n f;
0)(612 ) oTt = elfy
n f;
0)(,; ) eTt — el
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Interconnection structure and power balance

Storage | |Interconnection Dissipation

The power balance is given by :

elfo+ ehfh + el =0

dE dENT dx
o -\ ) & f—ecfcfeﬁf,;,-i-epfp

E(1) o)+/ Tat + / fodt

dlsstpated energy exchanged energy

And

and then
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[ Physical domain flow f € F efforte € £ state ]
potential translation  velocity force displacement
kinetic translation force velocity momentum
potential rotation angular velocity  torque angle
kinetic rotation torque angular velocity angular momentum
electric current voltage charge
magnetic voltage current flux linkage
potential hydraulic volume flow pressure volume
kinetic hydraulic pressure volume flow flow momentum
chemical molar flow chemical potential  number of moles
thermal entropy flow temperature entropy
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Back to the energy

Well known subsystems with linear closure relations
e Potential energy stored in a spring : e = F(x)

1
E(x) = / Kxdx = — Kx?
x 2
o Kinetic energy oha mass : e = v(p) = %
p
E(p)= [ Zdp=-=
®) /,, Pop= 22
but it can be derived in case of non linear closure relations
e Potential energy stored in a non linear spring : e = K(x) = Ky + K1 X + Ko X?

E(x) = / K(x)dx = Kox + %m X% + %szs
X

femto-st

Doctoral Course 47 /56



Energy and co energy

The energy is expressed in term of the energy variables (extensive variables of
Thermodynamics), i.e. E(x) = [, e(x)dx where e(x) is the co-energy variables
(intensive variables of Thermodynamics). Graphically E(x) is the surface under the

curve e(x).

A e(x)

E*(e)
E(x)

>y

if e = e(x) is reversible,
E*(e) = /x(e)de
e

is the co energy of the system. It is the Legendre transform of the energy i.e.
E(e) = xe — E(x) withe = %. In the linear case E(x) = E*(e)
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Energy and co energy

In the case of moving inertia :
o Effort variable e = v
o State variable p

Or p = Mv then

E(p) = /Vp(v)dv = %MVZ

In this case the Legendre transform of the energy is given by

E*(v) = pv —E(p) = pv — %Mvz = %Mvz = E(p)
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Energy and co energy

Let’s now consider a non quadratic energy function :
E(x) = 1x6
6

with e(x) = x5. Then the co energy reads

E*(e) = (xeflxs) |4 —ef e 3.8
6 x=eb 6 6
Then
E*(e) # E(x)

Furthermore ;

. dEN"de ., ;

E*e)= (=) = = f

(e) (de) a Xere
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Exercice

Propose a port Hamiltonian model of the DC motor

-

femtost
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Dirac structures and Port Hamiltonian systems

To summarize, the overall system is defined from pairs of flow variables, effort variables
and state variables x. They are made up with :

o Energy storing elements :
dx OE

fo=— 2 g=2E
c C 8X

at’
o Power dissipating elements
R(fa,er) =0, eLfr > 0

o Power preserving transformers, gyrators.
e Power preserving junctions.

= Interconnexion structure = Dirac structure
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Geometric structure

Dirac structure

A constant Dirac structure on a finite dimensional space V is subspace
DCVxV*

such that
1. e'f =0forall (f,e) € D
2. dimD = dimy

For any skew-symmetric map J : V* — Vits graph {(f,e) € V x V*|f = Je} is a Dirac
structure.
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Geometric structure

Dirac structure 2
A constant Dirac structure on a finite dimensional space V is subspace

DCVxV*

such that
D =Dt

where L denotes orthogonal complement with respect to the bilinear form <, >
defined as :
< (fi,€1),(f2, €2) >= (e1lf) + (e2|fy)

with (e|f) = e f the natural power product.
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Geometric structure

Port Hamiltonian system
The dynamical system defined by DAEs such that :

(fc, ec,fo,ep) € D, teR
o]

with f; = 96 = 2E is called port Hamiltonian system.
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