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Energy based modeling and control

Motivations for adopting an energy-based perspective in
modeling and control

• Physical system can be viewed as a set of simpler subsystems that exchange
energy through ports,

• Energy is a concept common to all physical domains and is not restricted to linear
or non-linear systems: non-linear approach,

• Energy can serve as a lingua franca to facilitate communication among scientists
and engineers from different fields,

• Role of energy and the interconnections between subsystems provide the basis
for various control techniques: Lyapunov based control.
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Conservative systems

[Maschke and van der Schaft, 1992, van der Schaft, 2000]

Port-Hamiltonian control systems

ẋ = J(x)
∂U
∂x

(x) + gu(t),

y = g(x)>
∂U
∂x

(x)

J(x) = −J(x)> the interconnection matrix

Balance equations expressed by PHS: Conservation of the Hamiltonian and of
Casimir’s of the Poisson bracket

dU
dt

=
∂U
∂x

>
gu = u>y ,

dC
dt

=
∂C
∂x

>
gu = u>yC

Poisson bracket: {Z ,G}J = ∂Z
∂x
>

(x)J(x) ∂G
∂x (x)
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Control of PHS

[Ortega et al., 2001]

Interconnection and damping assignment passivity based control

IDA-PBC objective
Find a static state-feedback control u(x) = β(x) such that the closed-loop dynamics is
a PH system with interconnection and dissipation of the form

ẋ = (Jd (x)−Md (x))
∂Ud

∂x
(x),

Ud (x), has a strict local minimum at x∗,

Jd (x , u) = −Jd (x , u)T , the desired interconnection matrix,

Md (x , u) = Md (x , u)T ≥ 0, the desired dissipation matrix,
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IDA-PBC of PHS

The procedure consists in the matching of the open and desired closed-loop vector
fields

J(x)
∂U
∂x

(x) + g(x)β(x) =
(
Jd (x)−Md (x)

)∂Ud

∂x
(x)

with u = β(x) a state modulated source. If this quasi-linear PDE is satisfied then

ẋ = (Jd (x)−Md (x))
∂Ud

∂x
(x),

and

U̇d = −
∂U>d
∂x

Md
∂Ud

∂x
< 0, ∀x 6= x∗ , U̇d (x∗) = 0.
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Thermodynamic systems

First and second principle of thermodynamics
Consider a closed system,

dU
dt

= 0 and
dS
dt

= σ
(

x , ∂U
∂x

)
≥ 0

for PHS
dS
dt

=
∂S
∂x

>
J
(

x , ∂U
∂x

) ∂U
∂x

= σ ≥ 0, for any U(x)

This is the reason to consider quasi Hamiltonian system: retain much of the PHS
structure, but their structure matrices depend explicitly on the gradient of the
Hamiltonian (GENERIC, quasi Hamiltonian systems, Brayton-Mooser formulation,..)

[Grmela and Öttinger, 1997, Hangos et al., 2001, Otero-Muras et al., 2008, Eberard et al., 2007, Hoang et al., 2011,

Favache and Dochain, 2010]
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How does IDA-PBC look like?

IDA-PBC design gives a possibly non-linear PDE

J
(

x ,
∂U
∂x

)
∂U
∂x

(x) + g(x)β(x) =

(
Jd

(
x ,
∂Ud

∂x

)
−Md (x)

)
∂Ud

∂x
(x)

Hence, there are two big reasons to consider an particular structure for irreversible
systems

• Thermodynamically coherent models
• Non-linear control design
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This presentation is based on

• Ramirez, Maschke and Sbarbaro, Irreversible port-Hamiltonian systems: A
general formulation of irreversible processes with application to the CSTR,
Chemical Engineering Science, 2013. → Modeling

• Ramirez, Le Gorrec, Maschke and Couenne. On the passivity based control of
irreversible processes: a port-Hamiltonian approach. Automatica, 2016. →
Control
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Irreversible port Hamiltonian systems

ẋ = R
(

x , ∂U
∂x

)
J
∂U
∂x

(x) + g
(

x , ∂U
∂x

)
u,

y = g>
(

x , ∂U
∂x

) ∂U
∂x

(x)

where U(x) : Rn → R, S(x) : Rn → R relates to the energy and entropy respectively.

R
(

x , ∂U
∂x

)
= γ

(
x , ∂U

∂x

)
{S,U}J , γ ≥ 0.

{S,U}J defines the thermodynamic driving force
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First and second principle satisfied by construction

ẋ = R
(

x , ∂U
∂x

)
J
∂U
∂x

(x) + g
(

x , ∂U
∂x

)
u,

y = g>
(

x , ∂U
∂x

) ∂U
∂x

(x)

Energy balance

dU
dt

=
∂U
∂x

>
gu = y>u

Entropy balance

dS
dt

= ∂S
∂x
>

RJ ∂U
∂x + ∂S

∂x
>

gu = γ
(

x , ∂U
∂x

)
{S,U}2

J + y>S u

= σ + y>S u
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A single chemical reaction

m∑
i=1

αi Ai
r−⇀↽−

m∑
i=1

βi Ai

with αi , βi the stoichiometric coefficients for species Ai . The mass balance is

ṅi = ri V + Fei − Fsi i = 1, . . . ,m

• ni is the number of moles of the species i , n = (n1, . . . , nm)>,
• ri = ν̄i r , where r (n,T ) = (rf − rb) is the reaction rate
• ν̄i is the signed stoichiometric coefficient: ν̄i = αi − βi ,
• Fei and Fsi are respectively the inlet and outlet molar flows, Fe = (Fe1, . . . ,Fem)>

• The volume V in the reactor is assumed to be constant as well as the pressure

The mass balance can be represented as

ṅ = CrV + Fe − Fi

where C is a m × 1 is called the stoichiometric vector
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A single chemical reaction

ν1A1 + . . .+ νm−1Am−1 
 νmAm,
ν1, . . . , νm : stoichiometric coefficients
A1, . . . ,Am : chemical species
A affinity of reaction

together with the definition of the reaction rate:

r(A,T ) = rf (A,T )− rr (A,T )

The mathematical model

ṅi = Fei − Fsi + ri V mass balance

Ṡ =
m∑

i=1

(Fei sei − Fsi si ) +
Q
Te

+ σ entropy balance
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A single chemical reaction

ν1A1 + . . .+ νm−1Am−1 
 νmAm,
ν1, . . . , νm : stoichiometric coefficients
A1, . . . ,Am : chemical species
A affinity of reaction

together with the definition of the reaction rate:

r(A,T ) = rf (A,T )− rr (A,T )

U = the internal energy

J =


0 . . . 0 ν̄1

0 . . . 0
...

0 . . . 0 ν̄m
−ν̄1 . . . −ν̄m 0


︸ ︷︷ ︸

stoichiometric matrix

, g1 =

[
ne − n
φ
(
x, ∂U

∂x

)]︸ ︷︷ ︸
Mass transfer

, g2 =


0
...
0
1

 1
Te

︸ ︷︷ ︸
Heat transfer

,

[
u1
u2

]
=

[
F
V
Q

]

{S,U}J = A = −
m∑

i=1

ν̄iµi γ =
rV
TA
≥ 0, µ1, . . . , µm : chemical potentials

rV : molar flow
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Chemical reaction network

Consider a chemical reaction network involving m chemical species, among which mr
chemical reactions

m∑
i=1

αij Ai
rj−⇀↽−

m∑
i=1

βij Ai , j = 1, . . . ,mr .

The basic structure underlying the dynamics of the vector n of mole numbers of the
chemical species is given by the mass balance law:

ṅ = CrV + Fe − Fs,

where the m ×mr matrix C is called the stoichiometric matrix and whose columns are
the stoichiometric vectors of each reaction: C = [C1,C2, . . . ,Cmr ], and
r = [r1, r2, . . . , rmr ]> is the vector whose elements are the reaction rates of each
individual reaction.

The energy and entropy balance are

U̇ = Uin − Uout ,

Ṡ = Sin − Sout + σ
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IPHS of chemical reaction networks

Consider the chemical reaction network

ṅ = CrV + Fe − Fs,

Ṡ = σ + Sin − Sout ,

Define a vector containing the non-linear Rj functions of each reaction:

R ∈ Rmr = [R1, . . . ,Rm]>,

then,

ẋ =

[
0m CR

−R>C> 0

]
︸ ︷︷ ︸

JR

∂U
∂x

+

[
Fe − Fs

Sin − Sout

]

The entropy balance is

Ṡ =
∂S
∂x

ẋ =
∂S
∂x

JR
∂U
∂x

= −R>C>µ =

mr∑
i=1

σi

where σi is the entropy production due to the i-th chemical reaction.
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IPHS of chemical reaction networks

Alternatively,

The dynamic of the complete reaction is

ẋ =

mk∑
i=1

Xj + g(x , u) =

( mr∑
i=1

Ri Ji

)
︸ ︷︷ ︸

JR

∂U
∂x

+ g(x , u).

Notice that

Ji =

[
0m Ci
−C>i 0

]
,

with Ci the m × 1 stoichiometric vector.
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Interconnection and entropy rate assignment

The idea
look for the conditions to derive a stabilizing state feedback which renders the
closed-loop system in the form

ẋ = −M
(

x , ∂U
∂x ,

∂A
∂x

) ∂A
∂x

(x),

withM
(

x , ∂U
∂x ,

∂A
∂x

)
> 0.

The time variation of A is in this case

Ȧ = −
∂A>

∂x
(x)M

(
x , ∂U

∂x ,
∂A
∂x

) ∂A
∂x

(x) ≤ 0

and under some additional properness conditions the closed-loop system becomes
asymptotically stable.
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A class of Lyapunov function

The availability function
Use the negative of the total entropy as a convex extension to construct the availability
function using thermodynamic considerations [Ydstie and Alonso, 1997, Alonso and Ydstie, 2001].

Consider Gibb’s relation

dU = TdS − PdV +

N−2∑
i=1

µi dni = w(z)>dz.

With z = [S,V , n1, . . . , nN−2]> and w(z) = [T (z),−P(z), µ1(z), . . . , µN−2(z)]. Since
U is a homogeneous function of degree 1, from Euler’s Theorem

U = w(z)>z, w(z) =
∂U
∂z

(z)

So we define an energy based availability function

A(x , x∗) = U(x)−
[

U(x∗) +
∂U
∂x

(x∗)>(x − x∗)
]
≥ 0
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The energy based availability function
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Stabilization condition

The closed-loop equilibrium x∗ of a controlled IPHS is asymptotically stable if A is
strictly convex and x∗ satisfies:

γ {S,U}J {A,U}J + ỹ>u = −s, ỹ = g>
∂A
∂x

.

where s > 0, with strict equality only at x∗, u∗, where u∗ is the steady state value of
the control-input at the desired equilibrium. Proof (sketch):

dA
dt

=
∂A
∂x

>
(x)

dx
dt
,

=

(
∂U
∂x

(x)−
∂U
∂x

(x∗)
)>

RJ
∂U
∂x

(x) +

(
∂U
∂x

(x)−
∂U
∂x

(x∗)
)>

gu,

= R
(
−
∂U
∂x

(x∗)>J
∂U
∂x

(x)

)
+

(
∂U
∂x

(x)−
∂U
∂x

(x∗)
)>

gu, Def. IPHS

= γ {S,U}J {A,U}J + ỹ>u, Def. Poisson Br
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A globally stabilizing solution

Consider the following solution

ỹ>u = −R{A,U}J − σd [A,A]M + Rd{A,A}Jd

with Rd = γd {S,A}Jd
and σd = γd {S,A}2

Jd
with γd > 0.

where σd is a closed-loop entropy rate.

The condition is equivalently written in terms of the control u = β(x)

β(x) = g†(x)
(

Rd Jd − σd M
)(∂U

∂x
(x)−

∂U
∂x

(x∗)
)
− g†(x)RJ

∂U
∂x

(x)

and the matching condition

g⊥(x)
(

Rd Jd − σd M
)(∂U

∂x
(x)−

∂U
∂x

(x∗)
)
− g⊥(x)RJ

∂U
∂x

(x) = 0
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Proposition

Assume A is strictly convex and that there exist matrices M(x) ≥ 0 and
Jd (x) = −J>d (x), scalar functions γd > 0 such that σd = γd {S,A}2

Jd
and

Rd = γd {S,A}Jd
, and a full-rank left annihilator g⊥(x) of g(x) that verify the matching

equation. Then the control u = β(x) globally asymptotically stabilizes the closed-loop
equilibrium x∗. Furthermore, the closed-loop system is

ẋ =
(
− σd M + Rd Jd

)∂A
∂x

.

The closed-loop system is IPHS with dissipation s = σd
∂A
∂x
>

M ∂A
∂x .
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A useful corollary

Corollary
x∗ is asymptotically stable with u = β(x) if

g⊥J = 0, g⊥Jd = 0, g⊥M = 0.

Remark
Using IDA-PBC is not obvious when dealing with irreversible processes. The present
result can be interpreted as a thermodynamic equivalent, with structure and dissipation
matrices Rd Jd and σd M (interconnection and entropy assignment), and energy
function A (energy shaping)
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Control of CRN

Assumptions
• The reactor operates in liquid phase,
• The molar volumes of each species are identical and the total volume is constant,
• The initial number of moles is equal to the number of moles of the inlet of the

same species,
• For a given temperature T there is only one possible steady state for the mass.

The last assumption doesn’t imply that the chemical reaction network doesn’t admit
multiple stable or unstable equilibrium points.

Remark
The assumption on constant volume assures that the availability function A is strictly
convex.
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Recall the IPHS formulation of the CRN

ẋ =

[
0m CR

−R>C> 0

]
︸ ︷︷ ︸

JR

∂U
∂x

+

[
ne − n 0

φ
(

x , ∂U
∂x

)
1

Te

][ F
V
Q

]
=

( mr∑
i=1

Ri Ji

)
︸ ︷︷ ︸

JR

∂U
∂x

+ gu

One possible annihilator: g⊥(x) =


ñ2 −ñ1 0 . . . 0 0 0
0 ñ3 −ñ2 . . . 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 . . . 0 ñm −ñm−1 0



The matching equation (using the Corollary with Jd = JR)

g⊥JR = g⊥−CR

where g⊥− denotes the matrix obtained by removing the last column of g⊥. Hence the
Corollary is satisfied if

g⊥−C = g⊥−C1 = g⊥−C2 = . . . = g⊥−Cmr = 0
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Solving the matching equation

it suffices to check that for each individual reaction

g⊥−Ci =


0 . . . 0 ν̄i 1ñ2 − ν̄i 2ñ1
0 . . . 0 ν̄i 2ñ3 − ν̄i 3ñ2

...
...

...
...

0 . . . 0 ν̄i m−1ñm − ν̄i m ñm−1

 = 0.

which is true if
ñ1

ν̄i 1
=

ñ2

ν̄i 2
= · · · =

ñm−1

ν̄i m−1
=

ñm

ν̄i m
.

Since by assumption the initial numbers of moles of each species equals the numbers
of moles at the inlet, i.e., n(t = 0) = n0 = ne we have

n0i − ni

ν̄i i
= ξ, De Donder’s extent of reaction→ (always holds)

The second condition in the Corollary is solved by any matrix M(x) = M>(x) ≥ 0 for
which the first m rows and columns forms a null submatrix. This comes from the fact
that the last column of g⊥ is zero.
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A classical benchmark: the van der Vusse reactor

A non-isothermal CSTR with series/parallel reactions,

C5H6
k1/+H2O
−→ C5H7OH

k2/+H2O
−→ C5H8(OH)2

2C5H6
k3−→ C10H12

The reactor model is

ċ1 = −k1(T )c1 − k3(T )c2
1 + (c10 − c1)u1

ċ2 = k1(T )c1 − k2(T )c2 − c2u1

Ṫ = ϑ(c, T ) +
u2

ρCp
+ (T0 − T )u1,

with a thermodynamic “linearized” energy balance

ϑ(c,T ) = −
∆H1k1(T )c1 + ∆H2k2(T )c2 + ∆H3k3(T )c2

1
ρCp

.

The rate coefficients ki are dependent on the reactor temperature via the Arrhenius
equation

ki (T ) = ki0 exp
Ei

RT
, i = 1, 2, 3.
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The IPHS model

We complete the model with the balance equations of C5H8(OH)2 and C10H12,

ċ3 = k2(T )c2 ċ4 = 1
2 k3(T )c2

1

The stoichiometric matrices are

J1 =


0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 −1 0 0 0

 , J2 =


0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 1 −1 0 0

 , J3 =


0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1/2
1 0 0 −1/2 0

 .

Assumption
The approximated internal energy and energy availability function satisfy

∂U
∂c

=

µV1
µV2
µV3
µV4

 , ∂A
∂c

=

κ1(c1 − c∗
1 )

κ2(c2 − c∗
2 )

κ3(c3 − c∗
3 )

κ4(c4 − c∗
4 )


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The IPHS model

The CRN can then be written as

ẋ = (R1J1 + R2J2 + R3J3)


µV1
µV2
µV3
µV4
T

+


(c10 − c1) 0
−c2 0

0 0
0 0

ρCp
T (T0 − T ) 1

T

 u

where x = [c1, c2, c3, c4,S]>, u = [u1, u2]>, R1 = k1(T )
T c1, R2 = k2(T )

T c2,

R3 =
k3(T )

T c2
1 and such that −∆H1 = µV1 − µV2, −∆H2 = µV2 − µV3 and

−∆H3 = µV1 − 1
2µV4. Notice that c3 and c4 don’t affect the computation of the

controller.

CA0 5.0 mol/l k10 1.287× 1012 h
T0 403.15 K k20 1.287× 1012 h
Cp 3.01 kJ/(kg K) k30 9.403× 109 l/(mol h)
ρ 0.94342 kg/l E1/R -9758.3 K
∆H1 4.20 kJ/mol E2/R -9758.3 K
∆H2 -11.00 kJ/mol E3/R -8560.0 K
∆H3 -41.85 kJ/mol
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Numerical simulations

Figure: Molar concentration c2 and temperature
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Some final remarks

• IPHS are thermodynamically coherent models which retain passivity features of
PHS and satisfy the second principle.

• Thermodynamically coherent systems cannot be in PHS form, hence standard
PBC techniques such as IDA-PBC cannot be applied directly.

• In this work the closed-loop system is interpreted as a thermodynamic system,
hence the control parameters are related with thermodynamic quantities, such as
the reaction rates in the case of chemical reactions.

• For a general non-linear non-isothermal chemical reaction network the solution of
the matching equation follows directly from the IPHS model.

Future work
Deal with the distributed case (the tubular reactor).
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